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Résumé

Dans ce papier, nous considérons le cadre de ’appren-
tissage de représentations multi-taches ou l'objectif est
d’utiliser des taches sources pour apprendre une repré-
sentation qui réduit la complexité en données nécessaires
pour la résolution d’une tache cible. Nous commencons
par passer en revue les avancées récentes de la théorie
en apprentissage multi-taches et nous montrons qu’elles
peuvent fournir de nouveaux éclaircissements pour les
algorithmes populaires de méta-apprentissage lorsque
ceux-ci sont analysés dans ce cadre. En particulier, nous
mettons en évidence une différence fondamentale entre
les algorithmes basés sur les gradients et ceux basés
sur un calcul de distance et nous proposons une ana-
lyse théorique pour l'expliquer. Enfin, nous utilisons les
résultats obtenus pour améliorer la capacité de générali-
sation des méthodes de méta-apprentissage par le biais
d’un nouveau terme de régularisation spectral et nous
confirmons son efficacité par des études expérimentales
sur des bases de données classiques de classification
avec peu d’images. A notre connaissance, il s’agit de
la premiére contribution qui met en pratique les plus
récentes bornes issues de la théorie de I’apprentissage
de représentations multi-taches.

1 Introduction

Even though many machine learning methods now
enjoy a solid theoretical justification, some more recent
advances in the field are still in their preliminary state
which requires the hypotheses put forward by the theo-
retical studies to be implemented and verified in prac-
tice. One such notable example is the success of meta-
learning, also called learning to learn (LTL), methods
where the goal is to produce a model on data coming
from a set of (meta-train) source tasks to use it as a star-
ting point for learning successfully a new previously un-
seen (meta-test) target task. The success of many meta-
learning approaches is directly related to their capacity
of learning a good representation [RRBV20] from a set
of tasks making it closely related to multi-task represen-
tation learning (MTR). For this latter, several theore-
tical studies [Bax00, PLI4, [MPRI6l [AMIS, [YTZ 20|
provided probabilistic learning bounds that require the
amount of data in the meta-train source task and the
number of meta-train tasks to tend to infinity for it
to be efficient. While capturing the underlying gene-
ral intuition, these bounds do not suggest that all the
source data is useful in such learning setup due to the
additive relationship between the two terms mentioned
above and thus, for instance, cannot explain the empi-
rical success of MTR in few-shot classification (FSC)
task. To tackle this drawback, two very recent studies
[IDHK 20, [TJJ20] aimed at finding deterministic as-
sumptions that lead to faster learning rates allowing



MTR algorithms to benefit from all the source data.
Contrary to probabilistic bounds that have been used
to derive novel learning strategies for meta-learning al-
gorithms [AMIS], [YTZ™20|, there has been no attempt
to verify the validity of the assumptions leading to the
fastest known learning rates in practice or to enforce
them through an appropriate optimization procedure.

In this paper, we aim to use the recent advances in
MTR theory [TJJ20, DHK™20| to explore the inner
workings of popular meta-learning methods. In parti-
cular, we take a closer look at two popular families
of meta-learning algorithms, notably : gradient-based
algorithms [RL17, INAS18, LMRS19, BHTV19, [PO19]
including MaML [FALIT| and metric-based algorithms
[KZST5, [VBL™ 16|, [SSZ17, [ASSTT9] with its most pro-
minent example given by PROTONET [SSZ17].

Our main contributions are then two-fold :

1. We empirically show that tracking the validity
of assumptions on optimal predictors used in
[TJJ20, DHK™20] reveals a striking difference bet-
ween the behavior of gradient-based and metric-
based methods in how they learn their optimal
feature representations. We provide elements of
theoretical analysis that explain this behavior and
explain the implications of it in practice.

2. We show that theoretical assumptions mentioned
above can be forced during the training of meta-
learning algorithms for both families of considered
methods and that enforcing them leads to better
generalization of the considered algorithms for FSC
baselines.

The rest of the paper is organized as follows. We
present the existing theoretical results for the MTR
problem with their corresponding assumptions, and
introduce considered meta-learning algorithms in Sec-
tion [2] In Section [3] we investigate how metric-based
and gradient-based algorithms behave in practice with
respect to the identified assumptions and provide theo-
retical explanation to the observed behavior. We further
show that one can force meta-learning algorithms to
satisfy such assumptions through adding an appropriate
spectral regularization term to their objective function.
In Section [d] we provide an experimental evaluation
of several state-of-the-art meta-learning methods and
highlight the different advantages brought by the pro-
posed regularization technique in practice for the FSC.
Finally, we conclude and outline the future research
perspectives in Section [

2 Preliminary Knowledge

2.1 Multi-Task Representation Lear-

ning Setup

Given a set of T source tasks observed through
finite size samples of size n; grouped into matrices
X¢ = (Xt,15---,Xtm,) € R™*? and vectors of outputs
ye = We1s--- Yeny) € R™, VE € [[T]] o= {1,..., T}
generated by their respective distributions p., the goal
of MTR is to learn a shared representation ¢ belonging
to a certain class of functions ® :={¢ | ¢: X =V, X C
R?, V C R*} and linear predictors w; € R*, Vt € [[T]]
grouped in a matrix W € RT**_ More formally, this is
done by solving the following optimization problem :

T ny
arg min L Z Z f(yt,iy (W, ¢(Xt,i)>)a

&, W=
ped,WerTxk TNy —

where £ : Y x Y — Ry, with Y C R, is a loss function.
Once such a representation is learned, we want to apply
it to a new previously unseen target task observed
through a pair (X741 € R"2*4 yr.; € R"2) containing
ne samples generated by the distribution ppry;. We
expect that a linear classifier w learned on top of the
obtained representation leads to a low true risk over
the whole distribution p7y1. For this, we first use qAS to
solve the following problem :

na

R .1 R
Wiy = argmin — Y " U(yri1i (W, 9(x741,0)))-

kN
weR 259

Then, we define the true target risk of the learned linear
classifier Wy as :

L Wri)= E [y, (Wri1,6(x)))]

(x,y)~pr41

and want it to be as close as possible to the ideal true
risk £(¢*, Wi, ;) where wi.,; and ¢* satisfy :

vt € ([T +1]] and (x,y) ~ ps,

y=(w;,¢*(x)) +¢&, &~ N(0,0?). M)

Equivalently, most of the works found in the litera-
ture seek to upper-bound the excess risk defined as

ER(¢, Wri1) := L(¢, Wri1) — L(*, W)

2.2 Learning Bounds and Assumptions

First studies in the context of MTR relied on pro-
babilistic assumption [Bax00, [PL14, MPR16] [AMIS8|
YTZ"20| stating that meta-train and meta-test tasks



distributions are all sampled i.i.d. from the same random
distribution. This assumption, however, is considered
unrealistic as in many learning settings, such as FSC,
source and target tasks’ data are often given by different
draws (without replacement) from the same dataset.
In this setup, the above-mentioned works obtained the
bounds having the following form :

- 1 1

. < R
ER(¢p,Wwr41) <O <\/rTl + \/T) .
Such a guarantee implies that even with the increasing
number of source data, one would still have to increase
the number of tasks as well, in order to draw the second
term to 0. A natural improvement to this bound was
then proposed by [DHK™20| and [T'JJ20] that obtained
the bounds on the excess risk behaving as

. 1 1

ER(¢,Wry1) <O (an + n2> .
Both these results show that all the source and target
samples are useful in minimizing the excess risk. Thus,
in the FSC regime where target data is scarce, all source
data helps to learn well. From a set of assumptions
made by the authors in both of these works, we note
the following two :

Assumption 1 : Diversity of the source tasks
The matrix of optimal predictors W* should cover all
the directions in R* evenly. More formally, this can be
stated as

g1 (W*)

k(W) = o (W5) O(1),

where o;(-) denotes the i*® singular value of W*. As
pointed out by the authors, such an assumption can
be seen as a measure of diversity between the source
tasks that are expected to be complementary to each
other to provide a useful representation for a previously
unseen target task.

Assumption 2 : Consistency of the classifica-
tion margin The norm of the optimal predictors w*
should not increase with the number of tasks seen du-
ring meta—trainingﬂ This assumption says that the
classification margin of linear predictors should remain
constant thus avoiding over- or under-specialization to
the seen tasks.

While being highly insightful, the authors did not
provide any experimental evidence suggesting that veri-
fying these assumptions in practice helps to learn more

1. While not stated separately, this assumption is used in
[DHK*20] to derive the final result on p.5 after the discussion of
Assumption 4.3.

efficiently in the considered learning setting. Further-
more, from the proof given by [DHK™ 20|, and with the
same assumptions, we can easily derive a more explicit
bound :

If Vt, ||wy || = O(1) then,

R 1 1
ER(¢, W <O|— k(W )+ — .
(i) <0 (o (W) + )
suggesting that the terms ||w}|| and x(W*) underlying
the assumptions directly impact the tightness of the
established bound on the excess risk.

2.3 Meta-Learning Algorithms

Meta-learning algorithms considered below learn an
optimal representation sequentially via the so-called
episodic training strategy introduced by [VBL™16]|, ins-
tead of jointly minimizing the training error on a set of
source tasks as done in MTR. Episodic training mimics
the training process at the task scale with each task
data being decomposed into a training set (support set
S) and a testing set (query set Q). Recently, [CWL™20|
showed that the episodic training setup used in meta-
learning leads to a generalization bounds of O(%)
This bound is independent of the task sample size nq,
which could explain the success of this training strategy
for FSC in the asymptotic limit. However, unlike the
results obtained by [DHK™20) studied in this paper, the
lack of dependence on n; makes such a result uninsight-
ful in practice as we are in a finite-sample size setting.
This bound does not give information on other parame-
ters to leverage when the task number cannot increase.
We now present two major families of meta-learning
approaches below.

Metric-based methods These methods learn an
embedding space in which feature vectors can be compa-
red using a similarity function (usually a Lo distance or
cosine similarity) [KZS15, [VBL™16, [SSZ17, [ASST19].
They typically use a form of contrastive loss as their ob-
jective function, similarly to Neighborhood Component
Analysis (NCA) [GHRSO05]. In this paper, we focus our
analysis on the popular Prototypical Networks [SSZ17]
(PROTONET) that computes prototypes as the mean
vector of support points belonging to the same class :
c; = \TILI Y ses, @(s), with S; the subset of support
points belonging to class .

PROTONET minimizes the negative log-probability of
the true class 7 computed as the softmax over distances
to prototypes c¢; :

Eproto(sa Q7 ¢) =



exp(—d(¢(a),ci))
>_jexp (—d(é(a), c)))

with d being a distance function used to measure simi-
larity between points in the embedding space. In what
follows, we establish our theoretical analysis for PRo-
TONET and add its recent improved variation called
Infinite Mixture Prototypes [ASST19] (IMP) in the
experiments to confirm that the deduced findings apply
to other metric-based methods as well.

EqNQ - 10g

Gradient-based methods These methods learn
through end-to-end or two-step optimization |[RL17,
FALI7, INAS18, LMRS19, BHTV19, [PO19] where gi-
ven a new task, the goal is to learn a model from
the task’s training data specifically adapted for this
task. MAML [FALL7] updates its parameters 6 using an
end-to-end optimization process to find the best initia-
lization such that a new task can be learned quickly,
i.e. with few examples. More formally, given the loss /;
for each task ¢ € [[T']], MAML minimizes the expected
task loss after an inner loop or adaptation phase, com-
puted by a few steps of gradient descent initialized at
the model’s current parameters :

‘CMAML(G) = EtNU [zt(e - O‘vgt(e))]a

with 7 the distribution of the meta-training tasks and
« the learning rate for the adaptation phase. For sim-
plicity, we take a single step of gradient update in this
equation.

Again, we concentrate our theoretical analysis on
the most popular method (MAML) and add its recent
improvement Meta-Curvature [PO19] (MC) to validate
our findings for gradient-based methods experimentally.

3 Understanding Meta-learning
Algorithms through MTR
Theory

In this section, we study the behavior of gradient- and
metric-based meta-learning algorithms with respect to
the theoretical insights from MTR theory. We start by
empirically verifying that, despite a mismatch between
the multi-task setup considered in theoretical works
and the actual episodic training used by meta-learning
methods, the behavior of such methods reveals very
distinct features when looked at through the prism of
the considered theoretical assumptions. We then set on
a quest of explaining the differences in their behavior
leading to novel insights into meta-learning algorithms
and interesting open problems for future research.

3.1 What happens in practice ?

To verify whether theoretical results from MTR set-
ting are also insightful for episodic training used by
popular meta-learning algorithms, we first investigate
the natural behavior of MAML and PROTONET when
solving the few-shot image classification problem on
the popular minilmageNet |[RL17| and tieredImage-
Net |[RTR™18| datasets. The full experimental setup is
detailed in Section [4.1] and additional experiments for
Omniglot [LST15] benchmark dataset portraying the
same behavior are postponed to the Appendix.

To verify Assumption 1 from MTR theory, we seek to
compute singular values of W during the meta-training
stage and to follow their evolution. In practice, as T' is
typically quite large, we propose a more computatio-
nally efficient solution that is to calculate the condition
number only for the last batch of N predictors (with
N < T) grouped in the matrix Wy € RV*¥ that cap-
ture the latest dynamics in the learning process. We
further note that o;(WyWJ) = 02(Wy), Vi € [[N]]
implying that we can calculate the SVD of Wy W (or
WX,W ~ for k < N) and retrieve the singular values
from it afterwards. We now want to verify whether w,
cover all directions in the embedding space and track
the evolution of the ratio of singular values k(W y)
during training. For the sake of conciseness, we use x
instead of k(W) thereafter.

For the first assumption to be satisfied, we expect k to
decrease gradually during the training thus improving
the generalization capacity of the learned predictors and
preparing them for the target task. To verify the second
assumption, the norm of the linear predictors should not
increase with the number of tasks seen during training,
i.e., |[wll2 = O(1) or, equivalently, |[W|% = O(T) and
IWallr = O(1).

From Fig. [} we can see that for MAML (left), both
IW || and k increase with the number of tasks seen
during training, whereas PROTONET (right) naturally
learns the prototypes with a good coverage of the embed-
ding space, and minimizes their norm. This behavior
is rather peculiar as neither of the two methods ex-
plicitly controls the theoretical quantities of interest,
and still, PROTONET manages to do it implicitly. Be-
fore confirming this claim through extensive empirical
evaluations involving more baseline methods and bench-
mark datasets, we first prove several results that provide
explanation to the difference of behavior of these two
families of methods.
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FIGURE 1 — Evolution of x(Wy) (top), |[Wnllr
(middle) and accuracy (bottom) during the training
of MAML (left) and PROTONET (right) on minilma-
geNet (mini) and tieredlmageNet (tiered) with 5-way
1-shot episodes. All training curves are averaged over 4
different random seeds. The light blue/red areas shows
95% confidence intervals.

3.2 Metric- Gradient-based Me-

thods

VS

The differences observed above for the two methods
call for a deeper analysis of their behavior. To this end,
we provide a full explanation of why PROTONET natu-
rally leads to small condition number of the obtained
predictors and a consistent behavior of their norm, while
for MAML we consider a common simplified learning
model leaving the general result as an open problem
for future works.

PROTONET We start by first explaining why PRO-
TONET learns prototypes that cover the embedding
space efficiently. This result is given by the following
theoremPl

Theorem 1. (Normalized PROTONET) If Vi ||c;|| = 1,
then an encoder ¢ € argmin Lp,o10 has k(W) = 1.

This theorem explains the empirical behavior of PRO-
TONET in FSC task : the minimization of its objec-
tive function naturally minimizes the condition number
when the norm of the prototypes is low.

MAaML Unfortunately, the analysis of MAML in the
most general case is notoriously harder, as even expres-
sing its loss function and gradients in the case of an
overparametrized linear regression model with only 2

2. We refer the reader to the Appendix for the full proofs.

parameters requires using a symbolic toolbox for deri-
vations [AIS21].

To this end, we resort to the linear regression model
considered in this latter paper and defined as follows. We
assume for all ¢ € [[T]] that the task parameters ; are
normally distributed with 8; ~ N (04, I;), the inputs
x¢ ~ N (04, I;) and the output y; ~ N ((0,%4),1). For
each t, we consider the following learning model and its
associated square loss :

(2)

Je = <Wt7Xt>, b = ]Ep(xt,ytwt)(yt - <WtaXt>)2~

We can now state the following result.

Proposition 1. Let Vt € [[T]], 6; ~ N (0qg, 1), x¢ ~

N(0g4, 1) and yi ~ N ((0:,%4),1). Consider the lear-

ning model from Eq. @ let ©; := [0;,0;,.1]T, and de-

note by ‘/7\\75 the matriz of last two predictors learned by

MAML at iteration i starting from wqo = 0g4. Then, we

have that :
Vi, k(W) > k(Wh), i 0min(©;) = 0.

This proposition provides an explanation of why
MAML may tend to increase the ratio during the itera-
tions. Indeed, the condition when this happens indicates
that the optimal predictors forming matrix @, are li-
nearly dependent implying that its smallest singular
values becomes equal to 0. While this is not expected
to be the case for all iterations, we note, however, that
in FSC task the draws from the dataset are in general
not i.i.d. and thus may correspond to co-linear optimal
predictors. In every such case, the ratio is expected to
remain non-decreasing, as illustrated in Figure [I] where
MAML, contrary to PROTONET, exhibits plateaus and
the intervals where this latter is increasing. This high-
lights a major difference between the two approaches :
MAML does not specifically seek to diversify the learned
predictors, while PROTONET does.

3.3 Can we force the assumptions ?

So far, we have gathered evidence for the fact that
MTR theory seems to be insightful for meta-learning
algorithms as well. As satisfying the assumptions from
MTR theory is expected to come in hand with better
generalization performance, we now study what impact
forcing these assumptions may have on the learning
process when the optimal predictors involved in the
data generating process do not naturally satisfy them.
To this end, we aim to answer the following question :

Given W* such that K(W™*) > 1, can we learn

o~

W with k(W) = 1 while solving the underlying
classification problems equally well ?



While obtaining such a result for any distribution seems
to be very hard in the considered learning setup, we
provide a constructive proof for the existence of a dis-
tribution for which the answer to the above-mentioned
question is positive in the case of two tasks. The latter
restriction comes out of the necessity to analytically
calculate the singular values of W but we expect our
example to generalize to more general setups and a
larger number of tasks as well.

Proposition 2. Let T =2, X C R? be the input space
and Y = {—1,1} be the output space. Then, there exist
distributions p1 and ps over X x Y, representations
(E % ¢* and matrices of predictors W %+ W* that satisfy
Eq. |1 with /1(\/7\\7) ~ 1 and k(W*) > 1.

The established results show that in some cases even
when W* does not satisfy Assumptions 1-2 in the ¢*
space, it may still be possible to learn a new representa-
tion ¢ such that the optimal predictors in this space do
satisfy them. This can be done by using a common stra-
tegy that consists in adding k(W) and ||W||% directly
as regularization terms :

1 T ni
¢, W = argmin Ty Z Zﬂ(yt,i, (Wi, d(x1,0)))

pED,WERT Xk t=1 i=1
(3)

+ )\1/€(W) + )\QHW”%
Below, we explain how to implement this idea in practice
for popular meta-learning algorithms.

3.4 Related Work

Understanding meta-learning [RRBV2(] inves-
tigate whether MAML algorithm works well due to rapid
learning with significant changes in the representations
when deployed on target task, or due to feature reuse
where the learned representation remains almost in-
tact and establish that the latter factor is dominant.
In [GRE™T20], the authors explain the success of meta-
learning approaches by their capability to either cluster
classes more tightly in feature space (task-specific adap-
tation approach), or to search for meta-parameters that
lie close in weight space to many task-specific minima
(full fine-tuning approach). Our paper is complementary
to all other works mentioned above as it investigates
a new aspect of meta-learning that has never been
studied before and provides a more complete experi-
mental evaluation with the two different approaches of
meta-learning, separately presented in [RRBV20], and
|GREF™20).

Common regularization strategies Even though
our work does not aim at proposing a new regularization

strategy for meta-learning, regularizing the condition
number of the matrix of linear predictors and its norm
as suggested by MTR theory appears to be novel and
drastically different from existing regularization stra-
tegies. In general, we note that regularization in meta-
learning (i) is applied to either the weights of the whole
neural network [BSCIS8, [YTZ'20|, or (ii) the predic-
tions [JQI9, IGRET20| or (iii) is introduced via a prior
hypothesis biased regularized empirical risk minimi-
zation [PL14l [KO17, [DCSP18al [DCSP18bl IDCGP19].
Contrary to the first group of methods and the famous
weight decay approach [KH92|, we do not regularize the
whole weight matrix learned by the neural network but
the linear predictors of its last layer. Similarly, spectral
normalization proposed by [MKKY18| does not affect
k(W) and serves a completely different purpose. Second,
we regularize the singular values of the matrix of linear
predictors obtained in the last batch of tasks instead
of the predictions used by the methods of the second
group (e.g., using the theoretic-information quantities
in [JQ19]). Finally, the works of the last group are re-
lated to the online setting with convex loss functions
only, and, similarly to the algorithms from the second
group, do not specifically target the spectral properties
of the learned predictors.

4 Experiments

In this section, we investigate the impact of enforcing
the aforementioned theoretical assumptions for meta-
learning algorithms in practice.

4.1 Experimental Setup

We consider the few-shot image classification problem
on three benchmark datasets, namely : 1) Omniglot
ILST15] consisting of 1,623 classes with 20 images/class
of size 28 x 28 ; 2) miniImageNet [RLI7] consisting of
100 classes with 600 images of size 84 x 84 per class and
3) tieredImageNet |RTR18| consisting of 779,165
images divided into 608 classes.

For each dataset, we follow a common experimental
protocol used in [FALI7, ICWL™19] and use a four-layer
convolution backbone (Conv-4) with 64 filters as done
by [CWL™'19|. We perform 20-way classification with 1
shot and 5 shots on Omniglot, while on minilmageNet
and tieredImageNet we perform 5-way classification
with 1 shot and 5 shots. We measure the performance
using the top-1 accuracy with 95% confidence intervals,
reproduce the experiments with 4 different random
seeds using a single NVIDIA V100 GPU, and average
the results over 2400 test tasks.



TABLE 1 — Accuracy gap (in p.p.) when adding the nor-
malization of prototypes (PROTONET and IMP), and
both spectral and norm regularization (MAML and MC)
enforcing the theoretical assumptions. Statistically signi-
ficant results (out of confidence intervals) are reported
with *. (Cf. Appendix for absolute performances)

Dataset Episodes ProTONET IMP MamrL  MC
Ommielot 1-shot 10.33" +0.08  +3.95° —0.61"
glo 5-shot +0.01 10.07°  +117° —0.10%
inilnaseNet Lot 10.76* 11.84° 4123 10.36
& 5-shot +2.03* +0.86"  +1.96% +1.93"
) 1-shot +2.10* 11.30°  +1.42°  +0.70
tieredlmageNet o o s +0.23 10.59  +2.66*  +1.39°

4.2 Metric-based Methods

Theorem [I] tells us that with normalized class pro-
totypes that act as linear predictors, PROTONET na-
turally decreases the condition number of their matrix.
To this end, we choose to ensure the theoretical as-
sumptions for metric-based methods (PROTONET and
IMP) only with the prototype normalization similarly
to the constrained problem given in Eq. [6] From Table
[[l we note that normalizing the prototypes from the
very beginning of the training process has an overall
positive effect on the obtained performance.

4.3 Gradient-based Methods

Gradient-based methods learn a batch of linear pre-
dictors for each task and we can directly take them as
W to compute its SVD. In the following experiments,
we consider the regularized problem of Eq. [ for MAML
as well as Meta-Curvature (MC) and set \; = Ay =1
to avoid hyper-parameter tuning. As expected, the dy-
namics of ||[Wy||r and x during the training of the
regularized methods remain bounded (cf. Appendix).

The impact of our regularization on the results is
quantified in Table [I] where a statistically significant
accuracy gain is achieved in most cases. The obtai-
ned improvement is on average more substantial when
compared to metric-based methods.

5 Conclusion

In this paper, we studied the validity of the theoreti-
cal assumptions made in recent papers on Multi-Task
Representation Learning theory when applied to po-
pular metric- and gradient-based meta-learning algo-
rithms. We found a striking difference in their behavior
and provided both theoretical and experimental argu-
ments explaining that metric-based methods satisfy

the considered assumptions, while gradient-based don’t.
We further used this as a starting point to implement
a regularization strategy ensuring these assumptions
and observed that it leads to faster learning and better
generalization.

While this paper proposes an initial approach to
bridging the gap between theory and practice for Meta-
Learning, some questions remain open on the inner
workings of these algorithms. In particular, being able
to take better advantage of the particularities of the
training tasks during meta-training could help improve
the effectiveness of these approaches.
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A Intuition behind the assump-
tions

An intuition behind the assumptions of Section 2.2
and the regularization terms introduced in Section 3.3
can be seen in Fig.[2} When the assumptions are not veri-
fied, the linear predictors can be biased towards a single
part of the space and over-specialized. The representa-
tion learned will not generalize well to unseen tasks. If
the assumptions are respected, the linear predictors are
complementary and will not under- or over-specialize
to the tasks seen. The representation learned can adapt
to the target tasks and better generalize.

B Behavior on Omniglot

The behavior of the norm and condition number of
the predictor for MAML and PROTONET on the bench-
mark dataset Omniglot [LST15] is shown in Figure
We observe similar trends as on minilmageNet and
tieredImageNet detailed in Section 3.1.

C Proofs of Section 3

Prototypical Loss We start by recalling the proto-
typical loss Lproto used during training of Prototypical
Networks for a single episode with support set S and

query set @ :

exp(=d(¢(q), ¢i))

ﬁproto(‘s’ Q7 ¢) - IOg

= E(q»Z)NQ
= E(q,)~q [d(o(a), ci)]
1)

+ EqNQ log Z exp (_d(¢(q)7 cj))
j=1

(2

with ¢; = ¢ > ses, ¢(s) the prototype for class 4, S; C .S
being the subset containing instances of S labeled with
class i.

Distance For PROTONET, we consider the Euclidean
distance between the representation of a query example
¢(q) and the prototype of a class ¢ ¢; :

—[l¢(q) — cill3
—¢(q) " p(q) + 2¢] ¢(q) — ¢/ c;.

_d((b(q)? Ci) =

> exp (—d(é(a), cj))

Then, with respect to class 4, the first term is constant
and do not affect the softmax probabilities. The remai-
ning terms are :

—d(¢(a), i) = 2¢{ ¢(a) —

\S|Z¢

seS;

||Cz‘||§

= Jleil3-

C.1 Proof of Theorem 1

Démonstration. We can rewrite the first term in Ly,0t0

as

% 3 qs(s)%(q)]

v seS;
+Eq,i~aq [llcill3]

and the second term as

E(q,i)~@ [d(#(q), ci)]

E(quQ [S| Z(b

sES;

—E(q,)~q

Eq-q |log Z exp (—

j=1

d(é(a), ;)

=Equg logzexp ‘ | Z¢ —llej113)
j=1 Il ses;
=Equ@ logZexp 20 ||CJH )
=Eq~q |log ”Z [exp (2¢] d(a) — l¢;113)]
"1
= Equ [log )" 3 [exp (2] dla) —lej B)] +logn
L j:1

By dropping the constant part in the loss, we obtain :

['proto(Sa Qa ¢) - Z ¢ ]
seS;

q,Z)NQ [|S |

+Equg (108" T [exp (26 6(a))]

Jj=1

Let us note S? the hypersphere of dimension d, and
M(S%) the set of all possible Borel probability measures
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FIGURE 2 — Illustration of the intuition behind the assumptions derived from the MTR learning theory. (left)
Lack of diversity and increasing norm of the linear predictors restrict them from being useful on the target task.
(right) When the assumptions are satisfied, the linear predictors cover the embedding space evenly and their
norm remains roughly constant on source tasks making them useful for a previously unseen task.

o 16

Q.. 30 0.90

€ 25 >

= O

=2 g 20 @© 0.85

c 10 S, 5

'.8 = > 8 0.80

= 38 .

° 10 <

C 6 5

8 0.75

0 5k 10k 15k 20k 25k 30k 0 5k 10k 15k 20k 25k 30k 0 5k 10k 15k 20k 25k 30k
Training iteration Training iteration Training iteration

GLJ 0.965

Qo

c 4000 1400 0.960

> o

Z 3000 £ 1300 g 0955
— —

C

o § 1200 3 0.950

‘5 2000 O

-_6 1100 < 0.945

< 1000

o 0.940

O 1000

0 S5k 10k 15k 20k 25k

Training iteration

30k 0 5k

10k
Training iteration

15k 20k 25k 30k 0 5k 10k 15k 20k 25k

Training iteration

30k

FIGURE 3 — Evolution of « (left), |Wx||r (middle), and validation accuracy (right) during training of MAML
(top) and PROTONET (bottom) on Omniglot with 20-way 1-shot episodes. All training curves are averaged over 4
different random seeds. The light gray area shows 95% confidence intervals.

on S Yu € M(S8%),u € 8% we further define the in S that share the same label, and C o ¢~! is the pro-

continuous and Borel measurable function :

Up(u) :

/ exp(2u ' v)du(v).
Sd
Then, we can write the second term as

Eq0 [10g Ecncog—1 [QXP (2¢(C)T¢(q))”
= EqNQ [log UCO¢71 (¢(q>)] »

where C is the distribution of prototypes of S,
i.e. each data point in C' is the mean of all the points

10

bability measure of prototypes, i.e. the pushforward
measure of C' via ¢.
We now consider the following problem :
min (4)
HEM(S?)

/ log U, (u)dp(u).
Sd

The unique minimizer of Eq. [ is the uniform distri-
bution on 8%, as shown in [WI20]. This means that
learning with Lp,o, leads to prototypes uniformly dis-
tributed in the embedding space and thus with x = 1.

O



C.2 Proof of Proposition 1

Démonstration. We follow [AIS21] and note that in the
considered setup the gradient of the loss for each task
is given by

(%t (\/K\’ - ant (6))
ow

so that the meta-training update for a single gradient
step becomes :

X (1 — 01)2(\/’&\775 — 0t)

Wy ¢ W1 — 5(1 - Q)Q(‘;\Vt—l - et)v

where ( is the meta-training update learning rate. Star-
ting at wg = 04, we have that

6\\/1 = 001,
\/?\\fg = C((C — 1)01 + 02)7

n
W, = cZBi(C — 1)
i=1

where ¢ := B(1 — a)2. We can now define matrices W
001 )

as follows :
Wi - ,
C((C — 1)01 + 02)
C((C — 1)01 —+ 92),

Wa = (C((C —1)%601 + (c = 1)62 + 05)
¢Xim Bile—1)",
(c S ei(c - 1)711) '

We can note that for all ¢ > 1 :
Wit! = (c = 1)WY} + ¢©;.

)

e
W5 =

Now, we can write :

1(Wih) _ o1((c = 1)Wh +¢©)
oo (With)  oy((c — 1)Wi + ¢©;)
L oille— 1)V/\7/§2 — 03(cO;)

aa((c — 1)Wi + ¢©;)
. 01((e = HWi) — 09(c®)
~ oa((c — 1)W5) + 02(cO;)
> K(W)).

K(W5) =

where the second and third lines follow from the inequa-
lities for singular values 01(A + B) < 01(A) + 02(B)
and 0;(A+B) > 0;(A) — omin(B) and the desired result
is obtained by setting omin(6;) = 0. O
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FIGURE 4 — Illustration of Proposition |2| and the
construction used in its proof.

C.3 Proof of Proposition 2

Démonstration. Let us define two uniform distributions
w1 and po parametrized by a scalar € > 0 satisfying the
data generating process from Eq. [I]:

1. i if 1-— 1, ... 1 1
1 is uniform over {1 — ke, k, 1, Fx{1ju{l+

d-3
ke k,—1, ...} x {—1};
d-3
is uni k-1
2. pg is uniform over {1 + ke, k, *=—=, ... } x {1} U
d-3
{=1+ke ke, 2L .} x {-1}.
d-3

where last d — 3 coordinates of the generated ins-
tances are arbitrary numbers. We now define the op-
timal representation and two optimal predictors for
each distribution as the solution to the MTR pro-
blem over the two data generating distributions and
= (6] d(x) = BTx, & € RI2)

2

¢*,W* = argmin E

€D, WeR2x2 {—] ()~

E(yv <Wiﬂ ¢(X)>)7 (5)
One solution to this problem can be given as follows :

e e )

where ®* projects the data generated by p; to a two-
dimensional space by discarding its d—2 last dimensions

1 00
010

0
0

1
1

9
—&



and the linear predictors satisfy the data generating
process from Eq. [T] with ¢ = 0. One can verify that
in this case W* have singular values equal to v/2 and
V2e, and K(W*) = 1. When ¢ — 0, the optimal pre-
dictors make the ratio arbitrary large thus violating
Assumption 1.

Let us now consider a different problem where we
want to solve Eq. [5] with constraints that force linear
predictors to satisfy both assumptions :

¢,W— arg min Z

PeD, WE]R2X2
s.t. k(W) = 1

y? <Wi7 ¢(X)>)a

7 (x y ~p

and Vi,

(6)

[[will ~ 1.

Its solution is different and is given by

(010 0\ & (01
“\0 01 ... 0/ T\l =€)
Similarly to ®*, F) projects to a two-dimensional space
by discarding the first and last d — 3 dimensions of the
data generated by ;. The learned predictors in this

case also satisfy Eq.[I] with € = 0, but contrary to W*,

W) 2+e24eve2 44
H(W) - 2+e2—eve2+4

)

tends to 1 when ¢ — 0. O

D Related work

Understanding meta-learning [RRBV2(] inves-
tigate whether MAML algorithm works well due to rapid
learning with significant changes in the representations
when deployed on target task, or due to feature reuse
where the learned representation remains almost intact.
They establish that the latter factor is dominant and
propose a new variation of MAML that freezes all but
task-specific layers of the neural network when lear-
ning new tasks. In [GRF™20|, the authors explain the
success of meta-learning approaches by their capabi-
lity to either cluster classes more tightly in feature
space (task-specific adaptation approach), or to search
for meta-parameters that lie close in weight space to
many task-specific minima (full fine-tuning approach).
Finally, the effect of the number of shots on the classifi-
cation accuracy was studied in [CLF20] for PROTONET
algorithm. Our paper is complementary to all other
works mentioned above as it investigates a new aspect
of meta-learning that has never been studied before and
provides a more complete experimental evaluation with
the two different approaches of meta-learning, separa-
tely presented in [RRBV20], [CLE20] and |[GRE™20].

Common regularization strategies Even though
our work does not aim at proposing a new regularization

strategy for meta-learning, regularizing the condition
number of the matrix of linear predictors and its norm
as suggested by MTR theory appears to be novel and
drastically different from existing regularization stra-
tegies. In general, we note that regularization in meta-
learning (i) is applied to either the weights of the whole
neural network [BSCIS8, [YTZ'20|, or (ii) the predic-
tions [JQI9, IGRET20| or (iii) is introduced via a prior
hypothesis biased regularized empirical risk minimi-
zation [PL14l [KO17, [DCSP18al [DCSP18bl IDCGP19].
Contrary to the first group of methods and the famous
weight decay approach [KH92|, we do not regularize
the whole weight matrix learned by the neural network
but the linear predictors of its last layer. The purpose
of the regularization in our case is also completely dif-
ferent : weight decay is used to avoid overfitting by
penalizing large magnitudes of weights, while our goal
is to keep the classification margin unchanged during
the training to avoid over-/under-specialization to some
source tasks. Similarly, spectral normalization propo-
sed by [MKKY18| to satisfy the Lipschitz constraint
in GANs through dividing W values by oymax(W) does
not affect the ratio between opax(W) and oppin (W)
and serves a completely different purpose. Second, we
regularize the singular values of the matrix of linear
predictors obtained in the last batch of tasks instead
of the predictions used by the methods of the second
group (e.g., using the theoretic-information quantities
in [JQ19]). Finally, the works of the last group are re-
lated to the online setting with convex loss functions
only, and, similarly to the algorithms from the second
group, do not specifically target the spectral properties
of the learned predictors.

E Detailed performance compari-
sons

Table [2] provides the detailed performance of our re-
produced methods with and without our regularization
or normalization and Figure [5] shows the performance
gap throughout training for all methods on minilma-
geNet. Theses results are summarized in Table 1 of
our paper and discussions about them can be found in
Section 4.2 and 4.3. We can see on both Table [2| and
Figure[f]that the gap is globally positive throughout the
training on both validation and test sets, which shows
the increased generalization capabilities of enforcing the
assumptions. There is also generally a high gap at the
beginning of training suggesting faster learning.
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FIGURE 5 — Performance gap (in p.p.) when applying
regularization for gradient-based and normalization for
metric-based methods throughout the training process
on 5-way 1-shot and 5-shot episodes on minilmageNet
(better viewed in color). Each data point is averaged
over 2400 validation episodes and 4 different seeds and
reported with 95% confidence interval. We can see that
the gap is globally positive throughout training and
generally higher at the beginning of training. The in-
crease in the gap at the end of training is linked to a
lower overfitting.

F Intended effect of the regulari-
zation /normalization

Figure [f] provides the detailed evolution of x and
|[W x|l during training for all methods on minilmage-
Net with 5-way 1-shot episodes. Adding our regulari-
zation for gradient-based or normalization for metric-
based to enforce the assumptions has the intended ef-
fect of both terms as explained in Section 4. We can
see that k and |W || r remain constant and bounded
throughout the training.

G Further enforcing a low condi-
tion number on Metric-based
methods

A first idea for further enforcing a low condition num-

ber for metric-based methods would be to regularize
the norm and condition number of the prototypes in

the same way as Gradient-based methods. Unfortuna-
tely, this latter strategy hinders the convergence of the
network and leads to numerical instabilities. Most likely
this is explained by prototypes being computed from
image features which suffer from rapid changes across
batches making the smallest singular value on(Wy)
close to 0. Consequently, we propose to replace the ratio
of the vector of singular values by its entropy as follows :

HU(WN) =
N
- Z softmax(c(Wy)); - log softmax(c(Wx));,

i=1

where softmax(-); is the i** output of the softmax func-
tion. As with k, we write H, instead of H,(W y) from
now on. Since uniform distribution has the highest en-
tropy, regularizing with x or —H, leads to a better co-
verage of R¥ by ensuring a nearly identical importance
regardless of the direction. Then, to ensure Assumption
2 and following Theorem [1} we also normalize the proto-
types. We obtain the following regularized optimization
problem :
q/ﬁ\, W = arg min
PED,WERT Xk

- AIHU(W)?

1 T ny N
Tt tzzl ; e (Wi, 9(Xe4))
(7)

where w = ﬁ are the normalized prototypes.

In Table we report the performance of our reprodu-
ced PROTONET without normalization, with normaliza-
tion and with both normalization and regularization on
the entropy. As mentioned in Section 4.2 of our paper,
we can see that further enforcing a regularization on the
singular values (through the entropy) does not help the
training since PROTONET naturally learns to minimize
the singular values of the prototypes. In Table [d we
show that reducing the strength of the regularization
with the entropy can help retrieve good performance.

H Ablative studies

In the following, we include ablative studies on the
effect of each term in our regularization scheme for
gradient-based methods to complete results given in
Section 4.3 of our paper. In Table [5| we compared the
performance of our reproduced MAML without regula-
rization (A; = A2 = 0), with a regularization on the
condition number & (A; =1 and A2 = 0), on the norm
of the linear predictors (A = 0 and A\ = 1), and with
both regularization terms (A; = Ay = 1) on Omniglot
and minilmageNet. We can see that both regularization

13
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terms are important in the training and that using only
a single term can be detrimental to the training results.
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TABLE 2 — Performance of several meta-learning algorithms without and with our regularization (or normalization
in the case of PROTONET and IMP) to enforce the theoretical assumptions. All accuracy results (in %) are
averaged over 2400 test episodes and 4 different seeds and are reported with 95% confidence interval. Episodes
are 20-way classification for Omniglot and 5-way classification for minilmageNet and tieredlmageNet.

Method Dataset Episodes without Reg./Norm. with Reg./Norm.
Ommielot 1-shot 95.56 + 0.10% 95.89 + 0.10%
& 5-shot 98.80 + 0.04% 98.80 + 0.04%
P N minilmaceNet 1-shot 49.53 +£0.41% 50.29 + 0.41%
ROTONET g 5-shot 65.10 + 0.35% 67.13 + 0.34%
deredlmapeNe 17510t 51.95 + 0.45% 54.05 + 0.45%
& 5-shot 71.61 + 0.38% 71.84 + 0.38%
Ommnielot 1-shot 95.77 + 0.20% 95.85 + 0.20%
& 5-shot 98.77 + 0.08% 98.83 + 0.07%
. 1-shot 48.85 + 0.81% 50.69 + 0.80%
IMP minifmageNet o 0 & 66.43+0.71% 67.29 + 0.68%
deredlmaseNe | 1-5H0t 52.16 + 0.89% 53.46 + 0.89%
& 5-shot 71.79 + 0.75% 72.38 4+ 0.75%
Ommielo 1-shot 91.72 + 0.29% 95.67 + 0.20%
& 5-shot 97.07 + 0.14% 98.24 + 0.10%
N inilmaseNeg | 1-5hOt 47.93 + 0.83% 49.16 + 0.85%
AML & 5-shot 64.47 + 0.69% 66.43 + 0.69%
deredlmaseNe  1-5HO0 50.08 + 0.91% 51.5 + 0.90%
& 5-shot  67.5 «+ 0.79% 70.16 + 0.76%
Ommislot 1-shot 96.56 + 0.18% 95.95 + 0.20%
& 5-shot 98.88 + 0.08% 98.78 + 0.08%
M inilmaceNeg | 1-5hOt 49.28 + 0.83% 49.64 + 0.83%
& 5-shot 63.74 + 0.69% 65.67 + 0.70%
deredlimaseNet  17ShOt 55.16 + 0.94% 55.85 4 0.94%
8 5-shot 71.95 + 0.77% 73.34 4+ 0.76%
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TABLE 3 — Performance of PROTONET with and without our regularization on the entropy and/or normalization.
All accuracy results (in %) are averaged over 2400 test episodes and 4 different random seeds and are reported
with 95% confidence interval. Further enforcing regularization on the singular values can be detrimental to

performance.

. without Norm., with Norm., with Norm.,

Dataset Episodes A =0 A = 0 A =1
Omniglot 20-way 1-shot  95.56 + 0.10% 95.89 +0.10% 91.90 +0.14%
& 20-way 5-shot 98.80 +£0.04% 98.80 +0.04% 96.40 &+ 0.07%
miniTmaceNet 5-way 1-shot  49.53 + 0.41% 50.29 +0.41% 49.43 £ 0.40%
& 5-way b5-shot  65.10 &+ 0.35% 67.13+0.34% 65.71 £0.35%
tieredImageNet 5-way l-shot  51.95 + 0.45% 54.05 +0.45% 53.54 £+ 0.44%
& 5-way 5-shot  71.61 +£0.38% 71.84 +0.38% 70.30 4 0.40%

TABLE 4 — Ablative study on the strength of the regularization with normalized PROTONET. All accuracy results
(in %) are averaged over 2400 test episodes and 4 random seeds and are reported with 95% confidence interval.

Dataset Episodes Reproduced A =0 A =1 A =0.1 A1 = 0.01 A1 = 0.001 A1 = 0.0001

minilmageNet 5-way l-shot  49.53 +0.41% 50.29 +0.41% 49.43+0.40% 50.19+0.41% 50.44+0.42% 50.46 +0.42% 50.45 4 0.42%
geet 5-way 5-shot  65.10 £0.35% 67.13 £0.34% 65.71 £0.35% 66.69 £ 0.36%  66.69 £ 0.34% 67.2+0.35% 67.12+0.35%

20-way 1-shot  95.56 +0.10% 95.89 +£0.10% 91.90+0.14% 94.38 £0.12%  95.60 £0.10%  95.7+£0.10% 95.77 £ 0.10%
20-way 5-shot  98.80 +0.04% 98.80 +0.04%  96.40 £0.07% 97.93+0.05%  98.62+0.04%  98.76 +£0.04%  98.91 4 0.03%

Omniglot

TABLE 5 — Ablative study of the regularization parameter for MAML on Omniglot and minilmageNet. All
accuracy results (in %) are averaged over 2400 test episodes and 4 different random seeds and are reported with
95% confidence interval. Using both regularization terms is important.

Dataset Episodes )\1 = )\2 =0 )\1 = 1,)\2 =0 )\1 = 0, )\2 =1 )\1 = )\2 =1
Omnielot 20-way 1-shot 91.72£0.29% 89.86 +£0.31% 92.80 £0.26% 95.67 &+ 0.20%
5 20-way 5-shot 97.07 £0.14% 72.47+0.17% 96.99 £0.14% 98.24 4+ 0.10%
minilmaceNet 5-way 1-shot  47.93 £0.83% 47.76 £ 0.84% 48.27+0.81% 49.16 + 0.85%
g 5-way 5-shot  64.47 £0.69% 64.44 +£0.68% 64.16 £0.72% 66.43 £ 0.69%
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