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Résumé

Les méthodes adressant la tâche des question-réponses
visuelles, consistant à répondre à une question posée
sur une image, sont connues pour leur tendance à ex-
ploiter les biais dans les données plutot que de rai-
sonner. Récemment, il a été montré qu’il est pos-
sible de favoriser l’émergence de patterns de raison-
nement dans les couches d’attention de modèles d’ap-
prentissage profond de l’Etat-de-l’Art, en les entrai-
nant sur des données visuelles parfaites. Ainsi, ces
modèles sont capables de produire un raisonnement
lorsque les conditions d’entrainement sont favorables.
Cependant, il reste difficile de transferer ces parterns
de raisonnement vers des modèles déployables, qui ne
disposent pas d’une representation visuelle parfaite.
Nous proposons une méthode de transfert basée sur un
mécanisme de régularisation impliquant la supervision
des séquences d’opérations nécéssaires pour répondre à
la question. Nous donnons une analyse théorique basé
sur le PAC-learning, montrant, sous conditions, qu’une
telle supervision permet de réduire la compléxité de
l’échantillon. Enfin, Nous démontrons experimenta-
lement l’éfficacité de notre méthode sur la base de
données GQA, ainsi que sa complémentarité avec les
méthodes de pré-entrainement inspirées de BERT.

Abstract

Methods for Visual Question Anwering (VQA), which
answer questions posed over images, are notorious for
leveraging dataset biases rather than performing rea-
soning, hindering generalization. It has been recently
shown that better reasoning patterns are emerging in
attention layers of a state-of-the-art VQA model when
they are trained on perfect (oracle) visual inputs, which
provides evidence that deep neural networks can learn
to reason when training conditions are favorable en-

ough. However, transferring this learned knowledge to
deployable models is a challenge, as knowledge is lost
during the transfer. We propose a method for know-
ledge transfer based on regularization, which we design
through an additional loss in the form of supervision
of the sequence of required reasoning operations. We
provide a theoretical analysis based on PAC-learning,
showing that such program prediction can lead to de-
creased sample complexity under mild hypotheses. We
also demonstrate the effectiveness of this approach ex-
perimentally on the GQA dataset and show its comple-
mentarity to BERT-like self-supervised pre-training.

1 Introduction

Reasoning over images is the main goal of Visual Ques-
tion Anwering (VQA), a task where a model is asked
to answer questions posed over images. This problem
is a test bed for the creation of agents capable of high-
level reasoning, as it involves multi-modal and high-
dimensional data as well as complex decision functions
involving latent representations and multiple hops.
State-of-the-art models are notorious for leveraging da-
taset biases and short-cuts in learning rather than per-
forming reasoning, leading to lack of generalization,
as evidenced by extensive recent work on and bias
oriented benchmarks for vision-and-language reasoning
[TAH20, ABPK18, KABW21, KJA+21]. Even large-
scale semi-supervised pre-training methods, which suc-
cessfully managed to increase overall VQA perfor-
mance, still struggle to address questions whose ans-
wers are rare given a context [KABW21].

It has been recently shown that reasoning patterns
are emerging in attention layers of a SOTA VQA model
when trained on perfect (oracle) visual inputs, which
provide evidence that deep neural networks can learn
to reason, when training conditions are favorable en-
ough [KJA+21]. In particular, uncertainty and noise in
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visual inputs seems to be a major cause for shortcut
learning in VQA. While this kind of methods provides
insights on the bottlenecks in problems involving lear-
ning to reason, and strong empirical results, they still
suffer from significant loss in reasoning capabilities du-
ring the transfer phase, when the model is required to
adapt from perfectly clean visual input to the noisy in-
put it will encounter after deployment. We conjecture,
that reasoning on noisy data involves additional com-
ponents not necessary in the clean case due to different
types of domain shifts :

— A presence shift, caused by imperfect object detec-
tors, leads to missing visual objects necessary for
reasoning, or to multiple (duplicate) detections.

— An appearance shift causes variations in object
embeddings (descriptors) for the same class of ob-
jects due to different appearance.

In this paper, we propose a new method for transferring
knowledge (reasoning patterns) from models learned on
perfect visual input to models trained on noisy visual
representations. Key to the success of the method is
regularization minimizing loss of the reasoning capabi-
lities during during transfer. In particular, we address
this problem through program prediction as an addi-
tional loss, i.e. supervision of the sequence of reasoning
operations along with their textual and/or visual argu-
ments. The underlying hypothesis is additional groun-
ding of the learning process through program super-
vision : in the knowledge transfer phase, when inputs
are switched from clean oracle inputs to noisy input,
the neural model is required continue to predict com-
plex reasoning programs from different types of inputs,
maintaining a strong link between the learned function
and its objective.

As a second justification, we claim that program su-
pervision in itself, i.e. w/o the context of knowledge
transfer, leads to a simpler learning problem, as the
underlying reasoning function is decomposed into a set
of tasks, each of which is easier to learn the full joint de-
cision function. We backup this claim through a theo-
retical analysis of sample complexity in reasoning in
settings of additional supervision, showing decreased
complexity under mild hypotheses.

In an experimental study, we demonstrate the effec-
tiveness of this approach on the GQA dataset and show
its complementarity even when combined to BERT-like
self-supervised pre-training [TB19, DCLT19].

As a summary, this papers presents the following
contributions :

— We propose a new program supervision module
added on top of vision-language transformer mo-

dels.

— We provide a theoretical analysis on the benefit of
supervising program prediction in VQA deriving
bounds on sample complexity.

— We experimentally demonstrate the efficiency of
program supervision and show that (i) it in-
creases VQA performance on both in- and out-
of-distribution sets, even when combined with
BERT-like pre-training [TB19, DCLT19] ; (ii) it
improves the quality of oracle transfer initially
proposed by [KJA+21].

2 Related Work

Visual Question Answering (VQA) — as a
task was introduced in various datasets [AAL+15,
GKSS+17, JHvdM+17], including GQA [HM19] which
is automatically-generated from real-world images.
Later, the GQA-OOD dataset [KABW20] introdu-
ced a new split of GQA focusing on rare (Out-Of-
Distribution) question-answer pairs, and showed that
many VQA models strongly rely on dataset biases.
This growing amount of diverse datasets has been
accompanied by the development of more sophistica-
ted VQA models. While their exhaustive survey is
out of the scope of this paper, one can mention fa-
milies based on object-level attention [AHB+18] or
tensor decomposition [BYCCT17]. In this work, we
use Transformers [VSP+17] as VQA models due to
their wide adoption by the community and impres-
sive results. In particular, we focus on the combination
of Transformers with a large-scale BERT [DCLT19]-
like pretraining which was shown to be beneficial for
VQA in several recent works [KABW19, TB19]. Our
work has also connections with neural-symbolic reaso-
ning [CGL+21, ARDK16] VQA models, which are ge-
nerally based on the prediction of reasoning programs,
whose elementary functions are learned jointly with
program prediction itself. In contrast to this work, our
method does not execute programs and does not use
them for the prediction of answers.

Measuring complexity of learning problems
— has been a goal of theoretical machine learning
since the early days, with a large body of work ba-
sed on PAC-Learning [Val84, SSSBD14]. Traditionally,
bounds have been provided ignoring data distributions
and focusing uniquely on hypothesis classes (network
structures in neural network language), e.g. as mea-
sured by VC-dimension. Surprising experimental re-
sults on training networks on random samples have
seemingly contradicted learning theory [ZBH+17], in
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Figure 1 – VQA takes visual input v and a question q and predicts a distribution over answers y. (a) Classical
discriminative training results in the full reasoning function g() being encoded in the network parameters θ,
while the network activations contain latent variables necessary for reasoning over multiple hops (layers). (b)
additional losses on program prediction require intermediate network activations to contain information on the
reasoning process, simplifying learning the reasoning function g. Under the hypothesis of it’s decomposition as
g() =

∑
r π

(r)()gr(), intermediate supervision favors separately learning the reasoning mode selection π() and
each reasoning mode function gr(). This intuition is analyzed theoretically in section 3.

particular Rademacher Complexity. Recently, building
on statistics of gradient descent, bounds have been
proposed which take into account data distributions,
notably [SAHLW19]. Algorithmic alignment between
neural network structures and the decomposition of
underlying reasoning functions has been studied in
[XLZ+20], with a focus on algorithms based on dy-
namic programming. Our theoretical contribution in
section 3 builds on the latter two methodologies and
extends this type of analysis to intermediate supervi-
sion of reasoning programs.

3 Sample complexity of program
supervision

We provide theoretical analysis showing that the pre-
diction and supervision of reasoning programs can im-
prove learnability (sample complexity) in vision and
language reasoning under some assumptions. In what
follows, we denote with g “true” (but unknown) under-
lying reasoning functions, and by f functions approxi-
mating them, implemented as neural networks. The
goal is to learn a function g able to predict a distri-
bution y over answer classes given an input question
and an input image, see Fig 1a. While in the experi-
mental part in section 4 we use state-of-the-art tran-
former based models, in this theoretical analysis, we
consider a simplified model, which takes as input the
two vectorial embeddings q and v corresponding to,
respectively, the question and the visual information
(image), for instance generated by a language model
and a convolutional neural network, and produces ans-

wers y∗ as

y∗ = g(q,v). (1)

We restrict this analysis to two-layer MLPs, as they are
easier to handle theoretically than modern attention
based models. The reasoning function g is approxima-
ted by neural network f parametrized by a vector θ
and which predicts output answers y as

y = f(q,v, θ). (2)

Our analysis uses PAC-learning [Val84] and builds on
recent results providing bounds on sample complexity
taking into account the data distribution itself. We here
brievely recall and reproduce Theorem 3.5. from pa-
per [XLZ+20], which, as an extension of a result in
[SAHLW19], provides a bound for sample complexity
of overparametrized MLPs with vectorial outputs, i.e.
MLPs with sufficient capacity for learning a given task :

Theorem 3.1 (Sample complexity for overparame-
trized MLPs). Let A be an overparametrized and
randomly initialized two-layer MLP trained with gra-
dient descent for a sufficient number of iterations.
Suppose g : Rd → Rm with components g(x)(i) =∑
j α

(i)
j (β

(i)T
j x)p

(i)
j , where β

(i)
j ∈ Rd, α(i) ∈ R, and

p
(i)
j = 1 or p

(i)
j = 2l, l ∈ N+. The sample complexity

CA(g, ε, δ) is

CA(g, ε, δ) = O

maxi
∑
j p

(i)
j |α

(i)
j |·||β

(i)
j ||

p
(i)
j

2 + log(mδ )

(ε/m)2


(3)
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We use the following Ansatz : since each possible input
question requires a potentially different form of reaso-
ning over the visual content, our analysis is based on
the following assumption.

Assumption 1. The unknown reasoning function g()
is a mixture model which decomposes as follows

y∗ =
∑
r

πrhr =
∑
r

πrgr(v), (4)

where the different mixture components r correspond
to different forms of reasoning related to different ques-
tions. The mixture components can reason on the visual
input only, and the mixture weights are determined by
the question q, i.e. the weights π depend on the ques-
tion q, e.g. π = gπ(q)

We call gπ(.) the reasoning mode estimator. One hypo-
thesis underlying this analysis is that learning to pre-
dict reasoning programs allows the model to more ea-
sily decompose into this form (4), i.e. that the network
structure closely mimicks this decomposition, as infor-
mation on the different reasoning modes r is likely to
be available in the activations of intermediate layers.
This will be formalized in assumption 3 and justified
further below.

Considering the supposed “true” reasoning function
y∗ = g(q,v) and its decomposition given in (4), we
suppose that each individual reasoning module gr can
be approximated with a multi-variate polynomial, in
particular each component h(i)

r of the vector hr, as

h(i)
r = gr(v) =

∑
j

α
(i)
r,j(β

(i)T
r,j v)p

(i)
r,j (5)

with parameters ω =
{
α
(i)
r,j , β

(i)
r,j , p

(i)
r,j

}
.

A trivial lower bound on the complexity of the reaso-
ning mode estimator gπ(.) is the complexity of the iden-
tity function, which is trivially obtained in the highly
unlikely case where the question embeddings q contain
components corresponding to the 1-in-K encoding of
the choice of reasoning mode r. We adopt a more rea-
listic and typical case as the following assumption.

Assumption 2. The input question embeddings q are
separated into clusters according to reasoning modes
r, such that underlying reasoning mode estimator gπ
can be realized as a k-NN classifier with dot-product
similarity in this embedding space.

Under this assumption, the reasoning mode estimator
can be expressed as a generalized linear model, i.e. a
linear function followed by a soft-max σ,

π = gπ(q) = σ
([
γT0 q, γ

T
1 q, ...

])
, (6)

where the different γr are the cluster centers of the
different reasoning modes r in the question embed-
ding space. As the softmax is a monotonic non-linear
function, its removal will not decrease sample com-
plexity 1, and the complexity can be bounded by the
logits πr = γTr q. Plugging this into (4) we obtain that
each component y∗(i) of the answer is expressed as the
following function :

y∗(i) =
∑
r

(
γTr q

)∑
j

α
(i)
r,j(β

(i)T
r,j v)p

(i)
r,j (7)

We can reparametrize this function by concatenating
the question q and the visual input v into a single input
vector x, which are then masked by two different binary
masks, which can be subsumed into the parameters γr
and β

(i)
r,j , respectively, giving

y∗(i) =
∑
r

∑
j

(γTr x)α
(i)
r,j(β

(i)T
r,j x)p

(i)
r,j (8)

Extending Theorem 3.5. from [XLZ+20], we can give
our main theoretical result as the sample complexity
of this function expressed as the following theorem.

Theorem 3.2 (Sample complexity for multi-mode rea-
soning functions). Let A be an overparametrized and
randomly initialized two-layer MLP trained with gra-
dient descent for a sufficient number of iterations.
Suppose g : Rd → Rm with components g(x)(i) =∑
r

∑
j(γ

T
r x)α

(i)
r,j(β

(i)T
r,j x)p

(i)
r,j where γr ∈ Rd, β

(i)
r,j ∈ Rd,

α
(i)
r,j ∈ R, and p

(i)
r,j = 1 or p

(i)
r,j = 2l, l ∈ N+. The sample

complexity CA(g, ε, δ) is

CA(g, ε, δ) =

O

(
maxi

∑
r

∑
j πp

(i)
r,j |α|·||γr||2·||βr,j ||

p
(i)
r,j

2 +log(m/δ)

(ε/m)2

)
,

The proof of this theorem is given in the supplementary
material (Appendix A).

Theorem 3.2 provides the sample complexity of the
reasoning function g() under classical training. In the
case of program supervision, our analysis is based on
the following assumption (see also Fig. 1b) :

Assumption 3. Supervising the prediction of reaso-
ning programs encodes the choice of reasoning modes r
into the hidden activations of the network f . Therefore,
learning is separated into several different processes,

1. In principle, there should exist special degenerate cases,
where an additional softmax could reduce sample complexity ;
however, in our case it is applied to a linear function and thus
generates a non-linear function.
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(a) learning of the reasoning mode estimator gπ() ap-
proximated as a network branch fπ() connected to
the program output ;

(b) learning of the the different reasoning modules gr()
approximated as network branches fr() connected
to the different answer classes yr ; each one of
these modules is learned independently.

We justify Assumption 3.a through supervision di-
rectly, which separates gπ() from the rest of the rea-
soning process. We justify Assumption 3.b by the fact,
that different reasoning modes r will lead to different
hidden activations of the network. Later layers will the-
refore see different inputs for different modes r, and se-
lector neurons can identify responsible inputs for each
branch fr(), effectively switching off irrelevant input.

We can see that these complexities are lower than the
sample complexity of the full reasoning function given
in theorem 3.2, since for a given combination of i, r, j,

the term ||γr||2·||βr,j ||
p
(i)
r,j

2 dominates the corresponding

term ||βr,j ||
p
(i)
r,j

2 . Let us recall that the different vectors
γ correspond to the cluster centers of reasoning modes
in language embedding space. Under the assumption
that the language embeddings q have been created with
batch normalization, a standard technique in neural

vision and language models, each value γ
(i)
r follows a

normal distribution N (0, 1). Dropping indices i, r, j to
ease notation, We can then compare the expectation
of the term ||γ||2·||β||p2 over the distribution of γ and
derive the following relationship :

Eγ(i)∼N(0,1)||γ||2·||β||
p
2 = C||β||p2 =

√
2

Γ(m2 + 1
2 )

Γ(m2 )
||β||p2
(9)

where Γ is the Gamma special function and m is the
dimension of the language embedding γ. We provide a
proof for this equality in the supplementary material
(Appendix B).

Discussion and validity of our claims — the dif-
ference in sample complexity is determined by the fac-
tor C in equation (9), which monotonically grows with
the size of the embedding space m, which is typically in
the hundreds. For the order of m=512 to m=768 used
for state-of-the-art LXMERT models [TB19], com-
plexity grows by a factor of around ∼20.

We would like to point out, that this analysis very
probably under-estimates the difference in complexity,
as the difference very much depends on the complexity
of the reasoning estimator π, which we have simplified
as a linear function in equation (6). Taking into account
just the necessary soft-max alone would probably bet-

ter appreciate the difference in complexity between the
two methods, which we leave for future work.

Our analysis is also based on several assump-
tions, among which is the simplified model (an over-
parametrized MLP instead of an attention based net-
work), as well as assumptions of Theorem 3.2 from
[XLZ+20] and [SAHLW19], on which our analysis is
based.

Lastly, we would like to comment on the fact that we
compare two different bounds : (i) the bound on sample
complexity for learning the full multi-modal reasoning
given in Theorem 3.2, and (ii) the bound for learning
a single reasoning mode given by Theorem 3.1. While
comparing bounds does not provide definitive answers
on the order of models, both bounds have been derived
by the same algebraic manipulations and we claim that
they are comparable.

4 Knowledge transfer and pro-
gram supervision

We now experimentally demonstrate the effectiveness
of our approach by augmenting a State-Of-the-Art
VQA model with program supervision. For this pur-
pose, we use the vision and language transformer model
LXMERT [TB19] based on sequences of self-attention
and cross-modality attention. We add the dedicated
module for program generation to the output of the
base model as shown in Fig. 2 — an adaptation to
other architectures would be straight forward. In the
lines of [CGL+21], the program decoder has been desi-
gned in a coarse-to-fine fashion. It first generates a co-
arse sketch of the program consisting only of the main
operations, which are then refined by predicting depen-
dencies, textual and visual arguments.

Coarse : operation — coarse prediction only pre-
dicts the main reasoning steps, i.e. a sequence of em-
beddings corresponding to the operations (“select co-
lor”, “choose size”, “query name”, “and”, etc.). This
sequence {Oi}i∈[0,n−1] ∈ Rdh is inferred using a re-
current neural network (RNN) in a GRU [CvMG+14]
variant. The GRU’s input is pooled from the base mo-
del’s output, in particular the task-specific yCLS token
embedding.

Fine : arguments — the coarse program is then
refined by adding the operations’ arguments to the pre-
diction. We define two types of arguments : the ques-
tion words and the image regions, both as choices over
the input tokens to VL-transformer model. We asso-
ciate the arguments to each operation by computing
an affinity score sij between each operation embedding
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Figure 2 – Program supervision. Placement of the program decoder into an LXMERT vision-language trans-
former. The decoder is fed with LXMERT outputs (enriched language and vision embeddings) and generates
programs using a coarse-to-fine approach.

Oi and each token embedding vj or lj , which repre-
sents the probability for word lj or vj to belong to the
argument set of operation Oi. It is computed with a
2-layer feed-forward network taken concatenated input
vectors.

Graph structure — While the program is predic-
ted as a sequence, it is actually structured as a graph
(a tree). In the question “Is there a motorbike or a
plane ?”, for instance, the operation “or” depends on
the result of two operations checking the existence of
a specific object in the image. We use another RNN
on top of the operation embeddings Oi to predict the
indices of the parent functions.

Program supervision — The corse-to-fine pro-
gram decoder trained using four additional losses :

L = Lvqa︸︷︷︸
VQA

+α.Lop + β.Ldep + γ.Lqarg + δ.Lvarg︸ ︷︷ ︸
Program supervision

, (10)

where Lop is a cross-entropy loss measuring prediction
error over operations. Argument losses Lqarg and Lvarg
(resp. textual and visual) are measured with a binary
cross entropy loss. Dependencies between operations
are supervised with another cross-entropy loss Ldep. α,
β, γ, δ are hyper-parameters weighting the different
losses.

Ground truth programs — We use ground truth
information from the GQA [HM19] dataset, whose
questions have been automatically generated from real
images. It contains a program describing the opera-
tions and arguments required to find the answer for
each question. However, the visual ground-truth argu-
ments (image regions) do not exactly match the visual
model’s input, as visual input is obtained from an ob-
ject detector [AHB+18]. We therefore match GT vi-
sual argument labels to detected objects minimizing
intersection-over-union (IoU).

Oracle transfer — Our method uses program

supervision to regularize knowledge transfer from
a visual oracle to noisy input, as introduced in
[KJA+21]. Oracle transfer consists in pretraining the
VL-Transformer model on ground-truth visual input
before performing BERT-like pre-training, it offers
training conditions which are more favorable for lear-
ning reasoning capabilities. We perform the following
steps :

— Oracle pre-training on GT visual input on the
GQA dataset, including program supervision.

— (optionally) BERT-like pre-training on data from
GQA + MS COCO, with program-supervision
only on the samples taken from GQA.

— Finetuning on the final VQA-objective on the
GQA dataset, while keeping program supervision.

5 Experimental results

Datasets and experimental setup — We per-
form our experiments with a tiny version of LX-
MERT [TB19], characterized by a hidden embedding
size of d=128 and h=4 heads per layer. We evaluate on
the GQA [HM19] and GQA-OOD [KABW20] datasets.
GQA-OOD is a benchmark dedicated to the out-of-
domain VQA evaluation, and gives information on the
generalisation power of the model. GQA is particularly
well suited for evaluating a large variety of reasoning
skills.

Training details — All models were trained with
the Adam optimizer [KB14], a learning rate of 10−4

with warm starting and learning rate decay, on two
P100 GPUs. BERT/LXMERT [TB19] pretraining is
performed during 20 epochs with a batch size of 512.
All pretraining losses are added from the beginning,
including the VQA one. Note that LXMERT [TB19]
is originally pre-trained on a corpus gathering images
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Model
Pretraining

Programs
GQA [HM19]

Oracle LXMERT/BERT overall acc.

(a) Baseline (+LXMERT/BERT) X 56.8
(b) Oracle transfer (+LXMERT/BERT) X X 57.8
(c) Ours (+LXMERT/BERT) X X X 58.4

Table 1 – Impact of program supervision on vision-language transformers ; All models are pre-trained with
LXMERT [TB19]/BERT-like objectives after Oracle Transfer. We report scores on GQA [HM19]-val, hyper-
parameters selected on validation set.

Supervision of GQA-OOD [KABW20] GQA [HM19]
acc-tail acc-head overall

(0) VQA only 46.9 62.0 62.2
(a) Coarse only 46.5 63.9 62.5
(b) Coarse + dependencies 46.8 64.4 62.8
(c) Full w/o v.arg 47.3 65.1 63.7
(d) Full (ours) 49.9 67.8 66.2

Table 2 – Ablation study of different types of program supervision (tiny model, no LXMERT/BERT pre-
training), on GQA validation. v.arg = supervision of visual arguments.

and sentences from MSCOCO [LMB+14] and Visual-
Genome [KZG+17]. As the GQA dataset is built upon
VisualGenome, the original LXMERT pre-training da-
taset contains samples from the GQA validation split.
Therefore, we removed these validation samples from
the pre-training corpus, in order to be able to validate
on the GQA validation split. After pre-trainning, we fi-
netune on GQA [HM19] during 4 epochs, with a batch
size of 32 and a learning rate equal to 10−4. Program
decoder hyper-parameters are set to α = 1, β = 1,
γ = 1 and δ = 100.

Program supervision improves visual reaso-
ning — Table 1 reports the effectiveness of program
prediction when combined with oracle and BERT-like
pretraining on the GQA dataset and experimentally
confirms the results found in the theoretical analysis.

Visual arguments are the key — We study the
impact of different types of program supervision in
Table 2. We can see that the importance of supervising
arguments, in (c) and (d). The supervision of visual
arguments (d) contributes most to the gain in perfor-
mance, again corroborating that visual uncertainty is
the main bottleneck for reasoning on the GQA data-
set. In addition, results on GQA-OOD (acc-tail and
acc-head) suggest that the gains are obtained in, both,
out- and in-distribution settings.

6 Conclusion

We have demonstrated that it is possible to improve
the reasoning abilities of VQA models when providing
additional supervision of program annotations, and we
have shown that this achieves superior performances
on OOD settings. In a theoretical analysis, we have
shown that program supervision can decrease sample
complexity under reasonable hypothesis.

The proposed method relies on the availability of
reasoning program annotations, which are costly to an-
notate, especially when dealing with human generated
questions. Recent work has already managed to gather
such kind of annotations [DAZ+16]. The next step will
be to extend the method to configurations where the
program annotation is rare or incomplete.
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Supplementary Mate-
rial

A Proof of theorem 3.2

For the unfamiliar reader, we here briefly recall the
notion of sample complexity, in the context of PAC-
learning [Val84], which characterizes the minimum
amount (=M) of samples necessary to learn a func-
tion with sufficiently low (= ε) error with sufficiently
high (= δ) probability :

Definition A.1 (Sample complexity). Given an error
threshold ε>0 ; a threshold on error probability δ ; a
training set S = {xi, yi} of M i.i.d. training samples
from D, generated from some underlying true function
y
¯i

= g(xi), and a learning algorithm A, which gene-
rates a function f from training data, e.g. f = A(S) ;
Then g is (M, ε, δ)-learnable by A if

Px∼D [||f(x)− g(x)|| ≤ ε] ≥ 1− δ (11)

A.1 The case of scalar outputs

In the lines of [SAHLW19], we first define the case for
a single component y(i) of the vector y and define the
following Corollary :

Corollary 0.1 (Sample complexity for multi-mode
reasoning functions with a single scalar component).
Let A be an overparametrized and randomly initialized
two-layer MLP trained with gradient descent for a suf-
ficient number of iterations. Suppose g : Rd → Rm with
g(x) =

∑
r

∑
j(γ

T
r x)αr,j(β

T
r,jx)pr,j where γr ∈ Rd,

βr,j ∈ Rd, αr,j ∈ R, and pr,j = 1 or pr,j = 2l, l ∈ N+.
The sample complexity CA(g, ε, δ) is

CA(g, ε0, δ0) =

O

(∑
r

∑
j πpr,j |α|·||γr||2·||βr,j ||

pr,j
2 + log( 1

δ0
)

ε20

)
,

Proof of Corollary 0.1 :

Using Theorem 5.1 from [SAHLW19], we know that
sums of learnable functions are learnable, and can thus
focus on a single term

y = g(x) = α(γTx)(βTx)p (12)

where we dropped indices r and j and the superscript
(i) for convenience.

We proceed in the lines of the proof of Theorem 5.1
in [SAHLW19]. Given a set of i.i.d data samples S =
{(xs, ys)}ns=1 = (X,y) from the underlying function
g(x), let w be the weights of the first layer of two layer
network with ReLu activations ; let H∞ ∈ Rn,n be a
Gram matrix defined as follows, with elements

H∞ij = Ew∼N (0,1)

[
xTi xjI{wtxi≥0,wtxi≥0}

]
.

To provide bounds on the sample complexity of g(x),
using Theorem 5.1 of [SAHLW19], it suffices to show
that the following bound holds√

yT (H∞)−1y < Mg (13)

for a bound Mg independent of the number of samples
n.

For first introduce some notation. For matrices
A = [a1, ...,an3

] ∈ Rn1×n3 and B = [b1, ..., bn3
] ∈

Rn2×n3 , the Khatri-Rao product is defined as A�B =
[a1⊗b1,a2⊗b2, ...,an3⊗bn3 ]. Let ◦ be the Haddamard
product (element wise multiplication) of two ma-
trices. We also denote the corresponding powers by
A⊗l,A�l,A◦l. We denote by A† = (ATA)−1AT

the Moore-Penrose pseudo-inverse, and by PA =

A
1
2A†A

1
2 the projection matrix for the subspace span-

ned by A.

From the proof of Theorem 5.1 in [SAHLW19], we
also know that

H∞ � K◦2l

2π(2l − 1)2
,

where K = XTX, and X is the data matrix of all row
vectors xi.

Let us consider the case of p = 1. Reformulating
equation (12), we get :

y = g(x) = α(γTx)(βTx) (14)

= α(xT γ)(xTβ) (15)

= α(x⊗x)T (γ⊗β) (16)

Now, taking the full set of input vectors xi arranged
into the full data matrix X, we can perform similar
algebraic operations to get

y = g(X) = α(XT γ) ◦ (XTβ) (17)

= α(X�2)T (γ⊗β) (18)

Plugging (17) and (18) into (13), we need to show that
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the following expression is smaller than a constant Mg :

α2((XT γ) ◦ (XTβ))T (H∞)−1(X�2)T (γ⊗β) (19)

=α2((X�2)T (γ⊗β))T (H∞)−1(X�2)T (γ⊗β) (20)

=α2(γ⊗β)T (X�2)(H∞)−1(X�2)T (γ⊗β) (21)

≤2πα2(γ⊗β)T (X�2)(K◦2)†(X�2)T (γ⊗β) (22)

=2πα2(γ⊗β)TPX�2
(X�2

)T
(γ⊗β) (23)

≤2πα2||(γ⊗β)||22 (24)

=2πα2||γ||22 · ||β||22 (25)

where we made use of ||a⊗b||22 = ||a||22||b||22 for two
vectors a and b and an integer n.

This finishes the proof for the case p = 1.
Let us consider the case of p = 2l+1. Reformulating

equation (12), we get :

y = g(X) = α(XT γ) ◦ (XTβ)p (26)

= α(X�2l)T (γ⊗β⊗(2l+1)) (27)

Plugging (27) into (13), we again need to show that the
following expression is smaller than a constant Mg :

α2((X�2l)T (γ⊗β⊗(2l+1)))T (28)

(H∞)−1(X�2l)T (γ⊗β⊗(2l+1)) (29)

=α2(γ⊗β⊗(2l+1))T (30)

(X�2l)(H∞)−1(X�2l)T (γ⊗β⊗(2l+1)) (31)

≤2π(2l − 1)2α2(γ⊗β⊗(2l+1))T (32)

(X�2l)(K◦2)†(X�2l)T (γ⊗β⊗(2l+1)) (33)

=2π(2l − 1)2α2(γ⊗β⊗(2l+1))T (34)

PX�2l
(X�2l

)T
(γ⊗β⊗(2l+1)) (35)

≤2π(2l − 1)2α2||(γ⊗β⊗(2l+1))||22 (36)

≤2πp2α2||(γ⊗β⊗(2l+1))||22 (37)

=2πp2α2||γ||22 · ||β||
2p
2 (38)

where we made use of ||a⊗b||22 = ||a||22||b||22 and there-
fore ||a⊗n||22 = ||a||2n2 for two vectors a and b and an
integer n.

This finishes the proof for the case p = 2l+1.

A.2 The case of vectorial outputs

In the lines of [XLZ+20], we consider each component
of the output vector independent and apply an union
bound to Corollary 0.1. If the individual components
y(i) fail to learn with probability δ0, then the full out-
put of dimension m fails with probability mδ0 and with

an error of at most mε0. A change of variables from
(ε0, δ0) to (ε, δ) gives a complexity for the model with
vectorial output of

CA(g, ε, δ) =

O

(
maxi

∑
r

∑
j πp

(i)
r,j |α|·||γ||2·||βr,j ||

p
(i)
r,j

2 +log(m/δ)

(ε/m)2

)
,

This ends the proof of Theorem 3.2.

B Proof of the inequality in Eq.
(9)

Let us denote by p(x) the density of normal distri-
bution. And to make the notation more succinct and
to avoid confusion between different usages of super-
scripts, in this proof we will change γir to γi, i.e. the
ith component of the vector γ, not to be confused with
γr, a vector corresponding to the embedding of the rth

reasoning mode. Then,

Eγi∼N(0,1)||γ||2·||β||p2 (39)

=||β||p2Eγi∼N(0,1)

(∑
i

γ2i

) 1
2

(40)

(41)

We now perform a change of variables and introduce a
new random variable

z =
∑
i

γ2i . (42)

Since each individual γi is distributed normal, z is dis-
tributed according to a χ2 distribution with m degrees
of freedom, and we get

Eγi∼N(0,1)||γ||2·||β||p2 (43)

=||β||p2 Ez∼χ2 [z
1
2 ] (44)

The expectation now corresponds to 1
2

th
centered mo-

ment of the χ2 distribution with m degrees of freedom,
whose kth moments are given as

Ez∼χ2 [zk] = 2k
Γ(m2 + k)

Γ(m2 )
(45)

This ends the proof of the equality.
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