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Abstract

Learning Invariant Representations has been success-
fully applied for reconciling a source and a target do-
main for Unsupervised Domain Adaptation. In this
work, we start by investigating the robustness of such
methods under the cluster assumption’s prism, bring-
ing new empirical evidence that invariance with a low
source risk does not guarantee a well-performing tar-
get classifier. More precisely, we show that the cluster
assumption is violated in the target domain despite be-
ing maintained in the source domain, indicating a lack
of robustness of the target classifier. To address this
problem, we demonstrate the importance of enforcing
the cluster assumption in the target domain, named
Target Consistency (TC), especially when paired with
a loss that promotes (class-level) invariance. Our new
approach results in a significant improvement in im-
age classification and segmentation benchmarks over
state-of-the-art methods based on invariant represen-
tations. Importantly, our method is flexible and easy
to implement, making it a complementary technique to
existing approaches for improving the transferability of
representations. Key-Words: Domain Adaptation,

Invariant Representations, Cluster Assumption.

1 Introduction

Deep learning (DL) models often show a weak ability to
generalize on samples significantly different from those
seen during training [BVHP18, ABGLP19, GGB19].
This inability to generalize out of the training distri-
bution presents a significant obstacle to a controlled
and safe deployment of DL models in real-world sys-
tems [AOS+16, Mar20]. To bridge the distribution gap,
Unsupervised Domain Adaptation (UDA) [AOS+16,
PY09] leverages labeled samples from a well-known do-
main, referred to as source, to generalize on a target
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Figure 1: An overview of the proposed framework. In
addition to training on the labeled source data, we en-
force a Target Consistency (TC), imposing the cluster
assumption over target data, and promoting a more ro-
bust model on the target domain. To amplify the effect
of TC, we perform class-level invariance (CLIV) while
enforcing the cluster assumption, where a class specific
discriminator is selected using either the source labels
or the target predictions for the adversarial loss. Thus
promoting positive feedback between decision bound-
ary updates and representation alignment.

domain, where only unlabeled samples are available. If
labelling functions are equal across domains, a situa-
tion known as the covariate shift, then adaptation can
be performed by weighting sample contributions in the
loss [SKM07, SNK+08]. However, for high dimensional
data, such as text or image, it is unlikely that source
and target distributions share enough statistical sup-
port to compute weights [JSR19]. Learning domain In-
variant Representations i.e., representations for which
it is impossible to distinguish the domain they were
sampled from, can bring together two domains which
are different in the input space [GL15, LCWJ15]. This
fundamental idea, and the corresponding theoretical
target risk [BDBCP07, BDBC+10], has led to a wide
variety of methods for adapting deep classifiers to new
domains [LZWJ16, LZWJ17, LCWJ18].

Nevertheless, the invariance of representations does
not always guarantee a low target risk. For instance,
in the case of images, aligning source and target back-
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grounds can be detrimental; it may incorrectly align
source and target classes if the background is incor-
rectly correlated with a given class due to some collec-
tion bias [BVHP18, ABGLP19], phenomenon known
as negative transfer [TS10]. Some theoretical works
have investigated the question of negative transfer
when label shift between source and target domains
is observed [ZDCZG19, JSR19], revealing a fundamen-
tal trade-off between invariance and ability of pre-
dictions to match the true target label distribution
[ZDCZG19]. Prior works address this trade-off by
relaxing domain invariance with weighted representa-
tions [CMLW18, YLC+19, LCWJ18, CZWG20]. How-
ever, learning invariant, but transferable representa-
tions, remains an open problem. One of the main hur-
dles is the negative impact invariance has on discrim-
inability, resulting in sub-optimal and sensitive target
classification.

In the present work, we aim to provide a new un-
derstanding of the transferability of representations
through the prism of the cluster assumption, a well-
known semi-supervised learning paradigm. The clus-
ter assumption states that if samples are in the same
cluster in the input space, they are likely to be of
the same class. When enforced on unlabeled samples,
the model benefits from a significant gain in gener-
alization [CSZ09, SBL+20, XDH+19] and robustness
[CRS+19, HMC+20]. We show that enforcing the clus-
ter assumption in the target domain, named Target
Consistency (TC), with domain invariant representa-
tions goes beyond the role of a regularizer for high
capacity features extractor as described in [SBNE18].
Crucially, we reveal that class-level invariance maxi-
mizes the gains induced by Target Consistency. By
fooling one discriminator per predicted class, we pro-
mote positive interaction between TC and Class-Level
InVariance (CLIV). Our contributions are:

• We show that domain invariance induces a signifi-
cant model sensitivity to perturbations in the tar-
get domain, indicating that invariance is achieved
by disregarding principles of robustness. Such evi-
dence motivates our interest in enforcing the clus-
ter assumption for improving the transferability of
domain invariant representations.

• To amplify the effect of TC, we perform class-
level invariance (CLIV) while enforcing the clus-
ter assumption, promoting positive feedback be-
tween decision boundary updates and representa-
tion alignment.

• We show with extensive experiments on both clas-

sification and segmentation datasets that we reach
state-of-the-art performances for methods based
on invariant representations.

2 Related Work

Domain Adaptation. The covariate shift adapta-
tion has been studied by [HGB+07, GSH+09, SNK+08]
and label shift with kernel mean matching [ZSMW13,
DPS14] and Optimal Transport [RCFT18]. Since
Importance Sampling based methods are limited to
distributions that share enough statistical support
[JSR19, DDF+17], an important line of works focuses
on learning domain Invariant Representations (IR)
[GL15, LCWJ15] for reconciling two non-overlapping
data distributions. IR has led to a furnished literature;
Joint Adaptation Network which aligns joint distribu-
tion of representations across layers [LZWJ16], Condi-
tional Domain Adaptation Network which performs the
multilinear conditioning between representations and
predictions [LCWJ18]. Recently, significant progress
has been made towards learning more transferable rep-
resentations. In the work [LLWJ19], it has been shown
that invariance can be achieved by generating con-
sistent intermediate representations, preserving their
transferability. [CWLW19] brought to light that in-
variance often lead to poor discriminability of features,
characterized by low rank representations. Therefore,
they suggest to penalize the highest singular value of a
batch of representations. [WJL+19] revisited the prin-
ciple of batch normalization by building a transferable
layer which aligns naturally mean and variance of rep-
resentations across domains.

Consistency Regularization. Consistency based
semi-supervised methods [LA16, TV17, BCG+19,
VLK+19, SBL+20] have enjoyed great success in re-
cent years, closing the gap with their fully supervised
counterparts. Such methods are based on a simple con-
cept: the prediction function should produce similar
outputs for similar inputs. By enforcing such a con-
straint, the resulting decision boundary will lie in low
density regions echoing a more robust model. Semanti-
cally similar inputs can be obtained by a simple Gaus-
sian noise injection [LA16, TV17], data augmentations
[BCG+19, SBL+20], or adversarial attacks [MMKI18].
The regularization term added consists of a distance
measure (e.g., L2, KL divergence) between the func-
tion’s output of a clean and a perturbed input.
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3 On the Vulnerability of IR

3.1 Preliminaries

Domain Adaptation (DA) introduces two domains, the
source and the target domains, on the product space
X × Y where X is the input space and Y is the la-
bel space. Those domains are defined by their spe-
cific joint distributions of inputs x ∈ X and labels
y ∈ Y, noted p(xs,ys) and q(xt,yt), respectively. We
refer to quantities involving the source and the tar-
get as s and t, respectively, with exponent notation.
Considering a hypothesis class H, subset of functions
from X to Y, DA aims to learn h ∈ H which per-
forms well in the target domain i.e. has a small tar-
get risk εt(h) := E(xt,yt)∼p[`(h(xt),yt)] where ` is a
given loss. Unsupervised Domain Adaptation (UDA)
considers the case where labeled samples are avail-
able in the source domain while the target domain
is only represented with unlabeled samples. Learning
Domain Invariant Representations (IR) is a key idea
for reconciling two non-overlapping data distributions
[GL15, LCWJ15]. A mainstream approach consists of
learning a representation with a deep feature extractor
such that a domain discriminator can not distinguish
the target from source samples [GL15]. Provided a
representation class Φ, a subset of functions from the
input space X to a representation space Z, a classi-
fier class G, a subset of functions from Z to Y, and
noting H := G ◦ Φ := {g ◦ ϕ; g ∈ G, ϕ ∈ Φ}, rep-
resentations ϕ ∈ Φ are learned by achieving a trade-
off between minimizing source classification error and
fooling a domain discriminator [GL15], expressed as
a function from Z to [0, 1]. The role of representa-
tions in UDA has been theoretically investigated by
Ben-David et al. in [BDBCP07], and extended in
[BDBC+10, MMR09, ZDCZG19], through a bound of
the target risk:

Theorem 1 (From [BDBCP07] and [BDBC+10]).
Given a hypothesis class H and a hypothesis h ∈ H:

εt(h) ≤ εs(h) + dH∆H + λH (1)

where dH∆H := suph,h′∈H |εs(h, h′) − εt(h, h′)| and
λH := infh∈H{εt(h) + εs(h)}. In particular, pro-
vided a representation ϕ, and applying the inequality
to G ◦ ϕ := {g ◦ ϕ : g ∈ G}:

εt(gϕ) ≤ εs(gϕ) + dG∆G(ϕ) + λG(ϕ) (2)

where dG∆G(ϕ) := supg,g′∈G |εs(gϕ) − εt(g′ϕ)| and
λG(ϕ) := infg∈G{εs(gϕ) + εt(gϕ)}.

On the one hand, Eq. (1) shows the role of the hy-
pothesis class capacity for bounding the target risk.
The lower the hypothesis class sensitivity to changes
in input distribution, the lower dH∆H. On the other
hand, Eq. (2) puts emphasis on representations: if
source and target representations are aligned i.e.,
p(zs) ≈ q(zt) for z := ϕ(x), then dG∆G(ϕ) remains
small.

3.2 Sensitivity in the Target Domain

Prior works [GL15, GUA+16, LCWJ15, LZWJ16,
LZWJ17, LCWJ18] have greatly improved capacity to
achieve a trade-off between source classification error
and domain invariance of representations by minimiz-
ing εs(gϕ) + dG∆G(ϕ) from Eq. (2). Clearly, main-
taining a low λG(ϕ) while learning domain invari-
ant representations is crucial for a good adaptation.
Some works bring theoretical evidence of its difficulty
[ZDCZG19, WWKL19, JSR19] while pioneering works
dig into that direction [LLWJ19, CWLW19, WJL+19].
This difficulty is referred as non-conservative DA in
[SBNE18] i.e., when the optimal joint classifier is sig-
nificantly different from the target optimal classifier:

inf
h∈H

εt(h) < εt(hλ) (3)

where hλ := arg minh∈H ε
s(h) + εt(h). Similarly,

when provided with a representation ϕ, the opti-
mal joint classifier differs from the target optimal
classifier: infg∈G ε

t(gϕ) < εt(gλϕ) where gλ :=
arg ming∈G{εs(gϕ) + εt(gϕ)} (see Appendix for more
details).

Importantly, mitigating at train time the risk of non-
conservative DA is a difficult problem since target la-
bels are involved in Eq. (3). Therefore, other tools need
to be leveraged to detect non-conservative adaptation
without the ground truth in the target domain. Fol-
lowing the insight from [SBNE18], we hypothesize that
violation of the cluster assumption in the target do-
main is a strong indicator of a case of non-conservative
DA. In such a case, a classifier with different source and
target errors should exhibit a substantial sensitivity in
the target domain to small input perturbations1.

Therefore, we analyze the robustness of a model
trained to minimize the source risk, through its sensi-
tivity to small perturbations in the input space. We fol-
low [NBA+18] and compute the mean Jacobian norm

1The violation of the cluster assumption is characterized by a
decision boundary localized in high density regions of the target
input space.

3



(a) Trajectory

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Trajectory 1 - Source

Trajectory 1 - Target

Trajectory 2 - Source

Trajectory 2 - Target

(b) Regions of Sensitivity

A->D W->A D->W
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
e
a
n
 J
a
co

b
ia

n
 N

o
rm

Source

Target

(c) Source only

A->D W->A D->W
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
e
a
n
 J
a
co

b
ia

n
 N

o
rm

Source

Target

(d) DANN

Figure 2: Sensitivity Analysis. (a) An illustration of the circular trajectory passing through three images of
different classes. (b) Jacobian norm of source (D) and target (A) as the input traverses two elliptical trajectories:
Trajectory 1 : different classes. Trajectory 2 : same classes, for a ResNet-50 trained on source only. (c) and (d)
The mean Jacobian norm on target and source domains of a ResNet-50 when trained on source only and with
a DANN objective on three Office-31 tasks.

as a proxy of the generalization at the level of indi-
vidual target samples, and as a measure of the local
sensitivity of the model on target examples:

Ext∼q
[∥∥J (xt)∥∥

F

]
(4)

where Jij(x) = ∂ŷi/∂xj is the Jacobian matrix, ‖J‖F is
the Frobenius norm, and ŷi is the output class proba-
bility for class i. For comparison, the source domain’s
sensitivity can be computed similarly over source in-
stances. By language abuse, we will refer to sensitivity
in source and target domains as source and target sen-
sitivity, respectively. The results obtained on 3 trans-
fer tasks from Office-31 (A → D, W → A, D → W)
are shown in Fig. 2(c) and Fig. 2(d). As suspected,
the target sensitivity is significantly higher compared
to the source sensitivity. Importantly, when enforcing
invariance of representations with Domain Adversar-
ial Neural Networks (DANN [GL15]), sensitivity in the
target domain decreases (for tasks W → A and D
→ W) while remaining significantly higher than the
source sensitivity. This validates our concern on non-
conservative domain adaptation: even after features
alignment, the resulting classifier still violates the clus-
ter assumption in the target domain. To further inves-
tigate the regions of sensitivity, we examine the func-
tion’s behavior on and off the data manifold as it ap-
proaches and moves away from three anchor points. To
this end, following [NBA+18], we analyze the behav-
ior of the model near and away from target and source
data along two types of trajectories: 1) an ellipse pass-
ing through three data points of different classes as il-
lustrated in Fig. 2(a), and 2) an ellipse passing through
three data points of the same class. Since linear com-
binations of images from the same class are likely to
look like a realistic image, the second trajectory is ex-
pected to traverse overall closer to the data manifold.

Fig. 2(b) shows the obtained results. We observe that,
according to the Jacobian norm, the model’s sensitiv-
ity in the vicinity of target data is comparable to its
sensitivity off the data manifold. Inversely, the model
remains relatively stable in the neighborhood of source
data and becomes unstable only away from them, fur-
ther confirming our hypothesis.

4 Target Consistency

4.1 Consistency Regularization

To promote a more robust model and mitigate target
sensitivity, we regularize the model predictions to be
invariant to a set of perturbations applied to the target
inputs. Concretely, we add to the objective function an
additional Target Consistency term:

LTC(ϕ, g) = LVAT(ϕ, g) + LAUG(ϕ, g)

= Ext∼p

[
max
‖r‖≤ε

||(h(xt)− h(xt + r)||2
]

+ Ext∼p
[
||(h(xt)− h(x̃t)||2

] (5)

Similar to [SBNE18], the first term incorporates the
locally-Lipschitz constraint by applying Virtual Ad-
versarial Training (VAT) [MMKI18] which forces the
model to be consistent within the norm-ball neighbor-
hood of each target sample xt. Additionally, the sec-
ond term forces the model to embed a target instance
xt and its augmented version x̃t similarly to push for
smooth neural network responses in the vicinity of each
target data. With a carefully chosen set of augmenta-
tions, such a constraint makes sense since the semantic
content of a transformed image is approximately pre-
served. Note that for more stable training, we follow
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Mean Teachers (MT) [TV17] and use of an exponen-
tial moving average of the model to compute the target
pseudo-labels (i.e., h(xt)). Overall, LTC is in-line with
the cluster assumption by promoting consistency to a
various set of input perturbations, thus, forcing the de-
cision boundary to not cross high-density regions.

Augmentations. For visual domain adaptation, and
based on the recent success of supervised image aug-
mentations [CZM+19, LKK+19, CZSL19] in semi-
supervised learning [XDH+19, SBL+20] and robust
deep learning [YLS+19, HMC+20], we propose to use
a rich set of state-of-the-art data augmentations to in-
ject noise and enforce consistency of predictions on tar-
get domain. Specifically, we use augmentations from
AutoAugment [CZM+19]. Upon each application, we
sample a given operation o from all possible augmenta-
tionsO = {equalize, . . . ,brightness}. If the operation o
is applicable with varying severities, we also uniformly
sample the severity, and apply o to obtain the aug-
mented target image x̃t = o(xt). However, applying a
single operation might be solved easily by a high capac-
ity model by memorizing the specific perturbations. To
overcome this, we generate more diverse augmentations
by mixing multiple augmented images (see Fig. 1).
We start by randomly sampling K operations from O
and K convex coefficients αi sampled from a Dirichlet
distribution: (α1, . . . , αK) ∼ Dir(1, . . . , 1). The aug-
mented image x̃t can then be obtained with an element-
wise convex combination of the K augmented instances
of xt: x̃t =

∑K
i=1 αioi(x

t), impelling the model to be
stable, consistent, and insensitive across a more diverse
range of inputs [ZSLG16, KKG18, HMC+20].

4.2 Target Consistency with IR

Effects of Target Consistency. Enforcing the tar-
get consistency gives us the ability to control the trade-
off between a low target sensitivity, i.e., , a low viola-
tion of the cluster assumption and a low source risk.
As described in [SBNE18], adding LTC to the objective
function reduces the hypothesis class H to only include
classifiers that are robust on both target and source
domains, noted HTC. Through the lenses of domain
adaptation theory (i.e., Eq. (1) from Theorem 1), by
constraining the hypothesis space H to contain stable
classifiers across domains, small changes to the hypoth-
esis in the source domain will not induce large changes
in the target domain [SBNE18]. Formally, this reduces
the domain discrepancy dHTC∆HTC

≤ dH∆H based on
the following inclusion HTC ⊂ H.

However, viewing the effect of TC as a constraint on

the hypothesis space (Eq. (1) from Theorem 1) does
not explain the hidden interactions between TC and
invariant representations (Eq. (2) from Theorem 1).
To this purpose, we consider a target sample xt near
the decision boundary which is hard to adapt.Thus,
its augmented version, x̃t, is likely to have a different
predicted class. By enforcing TC, the model embeds
xt and x̃t similarly to incrementally push the decision
boundary far from class boundaries. Such incremental
change might result in correcting the predicted class
label. However, the underlying representations remain
approximately the same, and the discriminator feed-
back does not reflect this predicted labels change. Now,
consider that domain invariance is achieved by leverag-
ing one discriminator per predicted class i.e., class-level
invariance. The change of label due to the TC up-
date will result in a switch of the discriminator used,
subsequently reflecting the label change in the domain
adversarial loss. This interaction between class-level
invariance and decision boundary update is the key to
the success of TC. Fig. 3 illustrates such an interaction.

Class-level domain discriminator. Similar to
[PCLW18] and [CS19] that jointly align the input dis-
tributions and output classes for fine-grained align-
ment. We use CLIV, a well-suited Class-Level InVari-
ance adversarial loss, which leverages one discrimina-
tor per predicted class. Let D := (Dc)1≤c≤C , a set of
C discriminators i.e., for z ∈ Z,D(z) ∈ [0, 1]C , and
noting · the scalar product in RC , CLIV is defined as
follows:

LCLIV(ϕ) := inf
D
{E(zs,ys)∼p[y

s · log(D(zs))]

+ E(zt,ŷt)∼q[ŷ
t · log(1− D(zt))]}

(6)

where given a sample x with representation z and out-
put ŷ := g(z), we weight the importance of discrimi-
nator Dc in the adversarial loss using the output ŷ. It
results into a class conditioning of the domain adversar-
ial loss, where the ground-truths are used in the source
domain and the predictions in the target domain.

To summarize, our model is trained by minimiz-
ing a trade-off between source Cross-Entropy (CE),
Class-Level InVariance (CLIV) and Target Consistency
(TC); given µ and ν tunable hyper-parameters,

L(g, ϕ) := LCE(g, ϕ) + µLCLIV(ϕ) + νLTC(g, ϕ) (7)

Theoretical analysis. We provide theoretical in-
sights into the interaction between TC and class-level
invariance. We consider ϕ ∈ Φ and g ∈ G, which are
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domain discriminators
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rzDpen(z̃t)
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Figure 3: Effect of TC on the learned representations. Mugs and pens from the source (A) and target (D)
domains of Office31 are pictured. The red squared pen, a target sample, is confounded with a mug due to spurious
correlations i.e., upward orientation and black color. Input augmentations wipe out spurious correlations induced
by the orientation, and the TC pushes the decision boundary to low density regions, correcting the predicted
class. Before the TC update, the class-level discriminator encourages the pen to reach the high-density region
of the incorrect class, i.e., the mug class. At this time, the class-level discriminator and TC gradients have
opposite directions, indicating a negative interaction. The TC update allows the sample to cross the decision
boundary. It ultimately changes the class-level discriminator, which now pushes the pen to the correct high-
density region corresponding to its true class i.e., the pen class. At this time, the domain adversarial and
TC gradients have similar directions, indicating a positive interaction. Crucially, the gradient of a vanilla
domain discriminator (i.e., DANN) interacts poorly with the TC update since it does not modify the target
representations distribution substantially. Best viewed in color.

modified to obtain ϕ̃ and g̃ defined as the closest in-
stances such that g̃ϕ̃ verifies TC. For instance, they
can be obtained by minimizing `2(ϕ, ϕ̃) + `2(g, g̃) +
λ · LTC(g̃, ϕ̃) where `2 is an L2 error. When en-
forcing TC, we expect to decrease the target error
i.e., εt(g̃ϕ̃) < εt(gϕ). We assume that it exists ρ ≥
(1− εt(g̃ϕ̃)/εt(gϕ))−1 for any (g, ϕ) i.e., the search of
consistency always improves the target error. We note
ỹ := g̃ϕ̃(x), F a large enough critic function space (See
Appendix), we adapt the analysis from [BVC+20]:

εt(gϕ) ≤ ρ(εs(gϕ) + 8 sup
f∈F
{E(zs,ys)∼p[y

s · f(zs)]

− E(z,ỹ)∼q[ỹ
t · f(zt)]}+ inf

f∈F
εt(fϕ))

(8)

Crucially, by observing that supf∈F{E(zs,ys)∼p[y
s ·

f(zs)] − E(z,ỹ)∼q[ỹ
t · f(zt)]} is an Integral Probability

Measure proxy of LCLIV, Eq. (8) reveals that class-level
domain invariant representations can leverage feedback
from an additional regularization, here the Target Con-
sistency, to learn more transferable representations.

5 Experiments

5.1 Datasets

Office-31 [SKFD10] is the standard dataset for visual
domain adaptation, containing 4,652 images in 31 cat-
egories divided across three domains: Amazon (A),
Webcam (W), and DSLR (D). We use all six possible

transfer tasks to evaluate our model. ImageCLEF-
DA ∗ is a dataset with 12 classes and 2,400 images as-
sembled from three public datasets: Caltech-256 (C),
ImageNet (I) and Pascal VOC 2012 (P), where each
one is considered as separate domain. We evaluate
on all possible pairs of the three domains. Office-
Home [VECP17] is a more difficult dataset compared
to Office-31, consisting of 15,00 images across 65 classes
in office and home settings. The dataset consists of
four widely different domains: Artistic images (Ar),
Clip Art (Ca), Product images (Pr), and Real-World
images (Rw). We conduct experiments on all twelve
transfer tasks. VisDA-2017 [PUK+17] presents a
challenging simulation-to-real dataset, with two very
distinct domains: Synthetic, with renderings of 3D
models with different lightning conditions and from
many angles; Real containing real-world images. We
conduct evaluations on the Synthetic → Real task.
For semantic segmentation experiments, we evaluate
our method on the challenging GTA5 → Cityscapes
VisDA-2017 semantic segmentation task. The syn-
thetic source domain is GTA5 [RVRK16] dataset with
24,966 labeled images, while the real target domain is
Cityscapes [COR+16] dataset consisting of 5,000 im-
ages. Both datasets are evaluated on the same classes,
with the mean Intersection-over-Union (mIoU) metric.
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Table 1: Average accuracy (%) of all tasks on image classification benchmarks for UDA. We compare our
approach with similar methods based on invariant representations, evaluated using the same protocol. Results
are obtained with a ResNet-50 unless specified otherwise. For detailed per task results, see the Appendix.

Method Office-31 ImageCLEF-DA Office-Home VisDA VisDA (ResNet-101)

ResNet [HZRS16] 76.1 80.7 46.1 45.6 52.4
DANN [GUA+16] 82.2 85.0 57.6 55.0 57.4
CDAN [LCWJ18] 87.7 87.7 65.8 70.0 73.7
TAT [LLWJ19] 88.4 88.9 65.8 71.9 -
BSP [CWLW19] 88.5 - 66.3 - 75.9
TransNorm [WJL+19] 89.3 88.5 67.6 71.4 -
Ours 89.6 89.5 69.0 77.5 79.0

Table 2: Acc (%) on the 5 hardest Office-Home tasks
for TC ablation.

Losses Avg

LCLIV 56.7
+LVAT 57.1
+LAUG 58.1
+LVAT + LAUG 58.6
+LVAT + LAUG w/ MT 58.9

Table 3: mIoU on GTA5 Cityscapes.

DeepLab v2
Method mIoU

Adapt-SegMap [THS+18] 42.4
AdvEnt [VJB+19] 43.8
Ours 44.9

5.2 Protocol

We follow the standard protocols for UDA [LZWJ17,
LCWJ18, CPK+17]. We train on all labeled source
samples and all unlabeled target samples and com-
pare the classification accuracy based on three random
experiments for classification and the mIoU based on
a single run for segmentation. For classification, we
use the same hyperparameters as CDAN [LCWJ18]
and adopt ResNet-50 [HZRS16] as a base network pre-
trained on ImageNet dataset [DDS+09]. As for CLIV
and TC hyperparameters, we use K = 4, µ = 1 and
ν = 10. We note that the method performs com-
paratively on a wide range of hyperparameter values
making it robust for practical applications. For seg-
mentation, we follow ADVENT [VJB+19] and use the
same experimental setup with Deeplab-V2 [CPK+17]
as the base semantic segmentation architecture with
a ResNet-101 backbone and a DCGAN discrimina-
tor [RMC15]. We employ PyTorch [PGM+19] and
base our code on official implementations of CDAN
[LCWJ18] and ADVEN [VJB+19].

Table 4: Avg Acc (%) of the 5 hardest Office-Home
tasks for TC coupled with different adversarial losses.

Ladv = LDANN LCDAN LCLIV

Ladv 47.6 53.4 56.7
+LVAT 48.0 55.1 57.1
+LAUG 51.3 55.7 58.1
+LVAT + LAUG 51.4 56.9 58.6
+LVAT + LAUG w/ MT 51.0 56.0 58.9

5.3 Results

For clarity and compactness, the average accuracy re-
sults of all tasks on all standard classification bench-
marks for UDA are reported in Table 1. The proposed
method outperforms previous adversarial methods on
all datasets. The gains are substantial when the source
and target domain are more dissimilar, as in VisDA
dataset. We conjuncture that this is a result of a large
number of target instances available, enabling us to ex-
tract a significant amount of training signal with TC
objective term to enforce the cluster assumption. Ad-
ditionally, the method performs well with many cate-
gories, as it is the case for Office-Home dataset. Such
gain is a result of the class-level invariance, which is
empowered as the number of classes grows. We ob-
serve overall smaller improvements on Office-31 due to
its limited size, and ImageCLEF-DA since the three
domains are visually more similar. We further demon-
strate the generality of the proposed method by con-
ducting additional experiments on GTA5 Cityscapes
task for semantic segmentation (Table 3), and observe
a gain of 2.5 points over the baseline Adapt-SegMap
[THS+18], confirming the flexibility of TC and its ap-
plicability across DA tasks.

5.4 Ablations

To examine the effect of each component of our pro-
posed method, we conduct several ablations on the 5
hardest tasks on Office-Home, with and without the
TC term, and with different variations of the TC loss.
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Figure 4: Analyses. (a) Accuracy on VisDA-2017 with different number of mixed augmentations K. (b) and
(c) The effect of TC on the target and source sensitivity for two Office-31 tasks (A W and A D). (d) The
error λ of the ideal joint hypothesis hλ. (e) A measure of domain discrepancy dA.

The results are reported in Table 2. We observe that
adding a consistency term, either VAT or AUG, re-
sults in a higher accuracy across tasks, with better re-
sults when smoothing in the vicinity of each target data
point within the data manifold with AUG, instead of
the adversarial direction using VAT. Their combina-
tion, with Mean Teacher (MT), results in an overall
more performing model. We also conduct an ablation
study on the effect of varying the mixing number K to
produce more diverse target images. Fig. 4(a) shows
the results. Overall, we observe a slight improvement
and more stable results when K is increased, but over
a certain threshold, the degree of noise becomes sig-
nificant, heavily modifying the semantic content of the
inputs and hurting the model’s performance. Most im-
portantly, to show the importance of coupling TC with
CLIV, we pair TC with DANN and CDAN losses. The
obtained results in Table 4 show lower average accu-
racy and minimal gains when enforcing the cluster as-
sumption in conjunction with such adversarial losses,
confirming the importance of imposing class-level in-
variance when applying TC.

5.5 Analyses

Sensitivity Analysis. To investigate the impact of
TC on the model sensitivity, we compare the mean Ja-
cobian norm of models trained with various objectives
(Figs. 4(b) and 4(c)). TC coupled with CLIV, greatly
improves the model’s robustness on target, with a small
increase in the source sensitivity.

Ideal Joint Hypothesis and Distributions Dis-
crepancy. We evaluate the performances of the ideal
joint hypothesis, which can be found by training an
MLP classifier on top of a frozen features extractor
on source and target data with labels. Fig. 4(d) pro-
vides empirical evidence that TC produces a better
joint hypothesis hλ, thus more transferable represen-
tations. Additionally, as a proxy measure of domain
discrepancy [BDBC+10], we compute the A-distance,

defined as dA = 2(1 − 2ε), with ε as the error rate of
a domain classifier trained to discriminate source and
target domains. Fig. 4(e) shows that TC decreases dA,
implying a better invariance.

Qualitative Analysis. As shown in Fig. 5, the
method produces locally consistent and globally coher-
ent predictions for semantic segmentation.

Target Images Ground Truth

OursSource Only

Figure 5: Qualitative Results on GTA5 Cityscapes.

6 Conclusion and Future Work

In this work, we presented a new approach to address
the lack of robustness of domain adversarial learning by
promoting consistent predictions, named Target Con-
sistency (TC), to a set of various input perturbations
in the target domain. Crucially, even if our approach
is derived from well-known strategies, i.e., class-level
invariance and target consistency, we are the first to
bring attention to their strong interaction, resulting in
a significant improvement of the transferability of rep-
resentations. Through extensive experiments, we show
that our approach outperforms other methods based
on invariant representations, validating our analysis.
Finally, TC has the advantage of being orthogonal to
recent works [LLWJ19, CWLW19] for improving the
transferability of invariant representations, thus, com-
bining them is an interesting research direction.
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Target Consistency for Domain Adaptation: when Robustness meets
Transferability

In this document, we provide supplementary materials for our work: Target Consistency for Domain Adaptation: when
Robustness meets Transferability. We present detailed per task results for all the datasets, additional experimental details and
some qualitative results. We also investigate the robustness of the proposed method through the lenses of Fourier analysis. Finally,
we provide more details about the theoretical statements of the paper.

Detailed Results

Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50)

Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet-50 (He et al. 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN (Long et al. 2015) 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
RTN (Long et al. 2016) 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6
DANN (Ganin et al. 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA (Tzeng et al. 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN (Long et al. 2017) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA (Sankaranarayanan et al. 2018) 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
CDAN (Long et al. 2018) 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
TAT (Liu et al. 2019) 92.5±0.3 99.3±0.1 100.0±.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4
BSP (Chen et al. 2019) 93.3±0.2 98.2±0.2 100.0±.0 93.0±0.2 73.6±0.3 72.6±0.3 88.5
TransNorm (Wang et al. 2019) 95.7±0.5 98.7±0.3 100.0±.0 94.0±0.2 73.4±0.4 74.2±0.3 89.3
Ours 94.8±0.8 99.1±0.2 100.0±.0 93.6±0.9 76.8±1.3 73.4±0.7 89.6

Table 2: Accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (ResNet-50)

Method I→ P P→ I I→ C C→ I C→ P P→ C Avg

ResNet-50 (He et al. 2016) 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN (Long et al. 2015) 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
DANN (Ganin et al. 2016) 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
JAN (Long et al. 2017) 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8
CDAN (Long et al. 2018) 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7
TransNorm (Wang et al. 2019) 78.3±0.3 90.8±0.2 96.7±0.4 92.3±0.2 78.0±0.1 94.8±0.3 88.5
TAT (Liu et al. 2019) 78.8±0.2 92.0±0.2 97.5±0.3 92.0±0.3 78.2±0.4 94.7±0.4 88.9
Ours 79.5±0.4 92.7±0.3 97.6±0.2 93.2±0.4 78.6±0.2 95.5±0.4 89.5
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Table 3: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50)

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

ResNet-50 (He et al. 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN (Long et al. 2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN (Ganin et al. 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN (Long et al. 2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN (Long et al. 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TAT (Liu et al. 2019) 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
BSP (Chen et al. 2019) 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
TransNorm (Wang et al. 2019) 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
Ours 53.1 73.0 77.0 62.6 72.4 73.1 63.8 54.4 79.8 74.6 60.4 83.3 69.0

Table 4: Accuracy (%) on VisDA-2017

ResNet-50 ResNet-101
Method Synthetic→ Real Method Synthetic→ Real

JAN (Long et al. 2017) 61.6 ResNet-101 (He et al. 2016) 52.4
GTA (Sankaranarayanan et al. 2018) 69.5 DANN (Ganin et al. 2016) 57.4
CDAN (Long et al. 2018) 70.0 CDAN (Long et al. 2018) 73.7
TAT (Liu et al. 2019) 71.9 BSP (Chen et al. 2019) 75.9
Ours 77.5±0.7 Ours 79.0±0.1

Table 5: Accuracy (%) on the 5 hardest Office-Home task for Target Consistency ablation (ResNet-50)

Ar�Cl Cl�Ar Pr�Ar Pr�Cl Rw�Cl Avg

LDANN 45.2±0.7 48.8±0.5 46.8±0.2 43.5±0.3 53.6±0.3 47.6
LDANN + LVAT 44.3±0.2 50.3±1.8 48.5±1.1 43.6±0.6 53.5±0.2 48.0
LDANN + LAUG 46.2±0.4 55.3±0.5 53.2±1.4 46.0±0.4 55.6±0.5 51.3
LDANN + LVAT + LAUG 46.3±0.6 53.5±1.0 54.7±0.7 46.2±0.7 56.3±0.9 51.4
LDANN + LVAT + LAUG /w MT 46.6±0.3 53.3±0.7 52.8±0.3 46.9±0.8 55.6±0.5 51.0
LCDAN 50.3±0.1 54.6±0.7 55.8±0.6 49.3±0.2 56.9±0.1 53.4
LCDAN + LVAT 50.1±0.5 58.5±0.6 59.1±0.6 49.8±0.2 57.9±0.1 55.1
LCDAN + LAUG 51.0±0.2 57.3±0.5 61.0±0.7 50.8±0.2 58.4±0.5 55.7
LCDAN + LVAT + LAUG 51.5±0.2 60.9±0.3 61.4±0.9 51.7±0.2 59.1±0.5 56.9
LCDAN + LVAT + LAUG /w MT 51.3±0.9 59.0±0.4 60.0±0.5 51.8±0.2 57.9±0.3 56.0
LCLIV 52.6±0.8 60.1±0.3 60.6±0.9 52.1±0.7 58.3±0.4 56.7
LCLIV + LVAT 52.4±0.6 60.1±0.5 61.2±0.9 53.1±0.2 58.9±0.8 57.1
LCLIV + LAUG 53.1±0.5 62.3±0.6 62.6±0.8 53.1±1.0 59.5±0.3 58.1
LCLIV + LVAT + LAUG 53.0±0.1 62.8±0.7 62.8±0.2 53.8±0.8 60.8±0.8 58.6
LCLIV + LVAT + LAUG /w MT 53.1±1.5 62.6±0.1 63.8±0.7 54.4±0.6 60.4±0.6 58.9

Table 6: mIoU on GTA5 � Cityscapes. AdvEnt+MinEnt* is an ensemble of two models.
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ResNet-101 (He et al. 2016) 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
Adapt-SegMap (Tsai et al. 2018) 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
AdvEnt (Vu et al. 2019) 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
Ours 91.0 41.9 81.6 30.1 22.6 26.0 28.8 13.6 82.6 37.2 81.9 56.1 29.3 84.8 34.1 48.8 0.0 26.8 35.7 44.9

AdvEnt+MinEnt* (Vu et al. 2019) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5



Experimental Details
Augmentations
For the set of possible augmentations O, we follow AutoAugment (Cubuk et al. 2019) and use the augmentations shown in
Fig. 1. We note that when mixing augmentations (i.e., K > 1), we also add the possibility of composing augmentations, e.g., for
K = 3, we give the possibility of sampling a pair of augmentations, so that a given of the operation oi might be composed of
two operations oi = oi1 ◦ oi2.

color

posterize

shear_x

contrast

sharpness

shear_y

rotate

autocontrast

solarize

translate_x

brightness

equalize

translate_y

clean image

Figure 1: An example of the possible augmentations to be applied on a given input image.

For semantic segmentation, we limit O to only contain photometric augmentations to avoid changing input coordinate-space,
i.e., we remove translate_x, translate_y, rotate, shear_x and shear_y from O. However, it is possible to
maintain the geometric transformations and use a bilinear resampler to bring back the outputs of the augmented image into the
coordinate-space of the clean image.

Mean Teacher
The objective of the consistency loss in Paper Eq 5. is to incrementally push the decision boundary to low-density regions on the
target domain. However, using the current model h as both a teacher, generating pseudo-labels for the target examples, and as a
student, producing the current predictions over perturbed inputs, might result in an unstable training, where a small optimization
step can result in a significantly different classifier, hurting the target generalization performance. To solve this, we follow Mean
Teachers (MT) (Tarvainen and Valpola 2017), and use an Exponential Moving Average (EMA) of the student model h weights
as a teacher h′, where the weights θ′t of the teacher model at a training step t are defined as the EMA of successive student’s
weights θ:

θ′t = αθ′t−1 + (1− β)θt (1)
where β is a momentum term that controls how far we reache into training history. The teacher model can be used to generate the
pseudo-labels h′(xt) for a more stable optimization procedure.



Target Consistency for Semantic Segmentation
To demonstrate the generality of target consistency, we propose to adapt it for segmentation tasks. Given the dense nature of
semantic segmentation, where we predict class assignment at each spatial location, we remove the local consistency constraint
LVAT, since even small perturbations at the pixel level might significantly change the local appearance, making the task of
predicting consistent labels impractical. Additionally, we constrain the target consistency to be only photometric augmentations
to conserve the input coordinate-space. We follow (Tsai et al. 2018) and adopt adversarial learning in the output space rather
than representation space, taking advantage of the structured outputs in semantic segmentation that contain spatial similarities
between the source and target domains, the adversarial network is applied at a multi-level to perform output space adaptation at
different feature levels effectively. We refer the reader to Section 4 of (Tsai et al. 2018) for more details on multi-level output
space-based adaptation.

Implementation
For the implementation, we use PyTorch (Paszke et al. 2019) deep learning framework and base our implementation on the
official implementations of CDAN (Long et al. 2018)1 and ADVEN (Vu et al. 2019)2. All experiments are done on a single
NVIDIA V100 GPU with 32GB memory. In terms of the hyperparameters, for classification, we adopt mini-batch SGD with
a momentum of 0.9 and the learning rate annealing strategy (Ganin et al. 2016) with an initial learning rate of 10−2. As for
segmentation, the model is trained using mini-batch SGD and a learning rate 2.5× 10−4, momentum 0.9 and weight decay 10−4,
and Adam optimizer (Kingma and Ba 2014) for the discriminator with learning rate 10−4, both with a polynomial learning rate
scheduler (Chen et al. 2017).

1https://github.com/thuml/CDAN
2https://github.com/valeoai/ADVENT

https://github.com/thuml/CDAN
https://github.com/valeoai/ADVENT


Fourier Analysis of Target Robustness
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Figure 2: Fourier Analysis of Model Robustness on Source and Target. An illustration of the Fourier sensitivity heatmaps on the
source and target domains for a ResNet-50 trained with different objectives. Each pixel of the heatmap is the error of the model
when all of its inputs are perturbed with a single Fourier basis vector.

To further examine the lack of target robustness in DA, we investigate a common hypothesis in robust deep learning (Hendrycks
et al. 2020), where the lack of robustness is attributed to spurious high-frequency correlations that exist in the source data,



that are not transferable to target data. To his end, we follow (Yin et al. 2019), and measure the model error after injecting an
additive noise at different frequencies. Concretely, we resize all of the data to 96× 96 images, we then add, at each iteration,
96 × 96 Fourier basis vector corresponding to an additive noise at a given frequency, and record the model error over either
source or target data when such basis vector is added to each image individually (see Section 2 of (Yin et al. 2019) for more
details). Fig. 2 shows the Fourier sensitivity heatmaps on source and target, for a ResNet-50 trained with different objectives.
Each pixel of 96× 96 heatmaps shows the error of the model when the inputs are perturbed by a single Fourier basis vector, in
which the error corresponding to low-frequency noise is shown in the center, and high frequencies are away from the center. We
observe that the model is highly robust on source across frequencies and the different objectives, but becomes quite sensitive
to high-frequency perturbations on target when trained on source only or with a DANN objective. However, such sensitivity
is reduced when enforcing the cluster assumption on the target domain, indicating a possible suppression of the spurious
high-frequency correlations found in the source domain.



Qualitative Results
Qualitative Results. Fig. 3 illustrate qualitative results for smantic segmentation. Additionally, we visualize the feature
representations of D � A task of Office-31 with t-SNE (Maaten and Hinton 2008) in Fig. 4. We observe that our method
produces a well aligned source and target features. This shows the benefits of coupling consistency regularization with class level
discrimination.

Target Images Ground Truth OursSource Only

Figure 3: Qualitative Results on GTA5 � Cityscapes.

Source Target

Source Only

Ours

DANN TDAN

Figure 4: T-SNE of the adapted features of, left: ResNet-50, center: DANN, right: Ours, trained on D � A task of Office-31.
Blue: Source D; Red: Target A.

Toy Dataset. To show the effect of TC on the decision boundary, we conduct a toy experiment on the rotating two moons
dataset, where the target samples are obtained by rotating the source points by 45◦, comparing the learned decision boundary
when we train on source only, with a DANN objective, and when using TC. As shown in Fig. 5, the TC terms helps push the
decision boundary away from dense target regions, resulting in a well performing prediction function across domains.

Source Only DANN DANN + Target consistency

Figure 5: Effect of TC on two moons dataset. Red and green points are the instances of the two classes of the source domain.
Blue points are target samples generated by rotating source samples. The black line shows the learned decision boundary, when
using only source samples, with a DANN objective and with target consistency.



Theory
Non-conservative Domain Adaptation
Theorem 1 (From (Ben-David et al. 2007) and (Ben-David et al. 2010)). Given a hypothesis classH and a hypothesis h ∈ H:

εt(h) ≤ εs(h) + dH∆H + λH (2)
where dH∆H := suph,h′∈H |εs(h, h′)− εt(h, h′)| and λH := infh∈H{εt(h) + εs(h)}. In particular, provided a representation
ϕ, and applying the inequality to G ◦ ϕ := {g ◦ ϕ : g ∈ G}:

εt(gϕ) ≤ εs(gϕ) + dG∆G(ϕ) + λG(ϕ) (3)
where dG∆G(ϕ) := supg,g′∈G |εs(gϕ)− εt(g′ϕ)| and λG(ϕ) := infg∈G{εs(gϕ) + εt(gϕ)}.

On the one hand, Eq. (2) shows the role of the hypothesis class capacity for bounding the target risk. The lower the hypothesis
class sensitivity to changes in input distribution, the lower dH∆H. On the other hand, Eq. (3) puts emphasis on representations: if
source and target representations are aligned i.e., p(zs) ≈ q(zt) for z := ϕ(x), then dG∆G(ϕ) = 0.

One of the main difficulties of DA is achieving the optimal trade-off between source classification error and domain invariance
of representations by minimizing εs(gϕ) + dG∆G(ϕ) from Eq. (3), while maintaining a low λG(ϕ). This difficulty is referred as
non-conservative DA in (Shu et al. 2018) i.e., when the optimal joint classifier is significantly different from the target optimal
classifier:

inf
h∈H

εt(h) < εt(hλ) where hλ := arg min
h∈H

εs(h) + εt(h) (4)

Non-conservative DA can be described from the point of view of the hypothesis class as described by(Shu et al. 2018), i.e.,
Eq. (2) from Theorem 1, then allowing change in representations to detect it, i.e., inf computed on H = G ◦ Φ in Eq. (4).
Similarly, when provided with a representation ϕ, the optimal joint classifier differs from the target optimal classifier:

inf
g∈G

εt(gϕ) < εt(gλϕ) where gλ := arg min
g∈G
{εs(gϕ) + εt(gϕ)} (5)

This expression reflects the view of the literature of domain adversarial learning which puts emphasis on representations, i.e.,
Eq. (3) from theorem Theorem 1. Note this definition only allows to modify the classifier, inf computed on G, for detecting
non-conservative DA, which may be a weak indication. We extend the denomination of non conservative DA to the case where
εt(ϕ) := infg∈G ε

t(gϕ) is not optimal in ϕ.

Theoretical Analysis
We provide theoretical insights into the interaction between TC and class-level invariance. We consider ϕ ∈ Φ and g ∈ G, which
are modified to obtain ϕ̃ and g̃ defined as the closest instances such that g̃ϕ̃ verifies TC. For instance, they can be obtained by
minimizing `2(ϕ, ϕ̃) + `2(g, g̃) + λ · LTC(g̃, ϕ̃) where `2 is an L2 error. When enforcing TC, we expect to decrease the target
error i.e., εt(g̃ϕ̃) < εt(gϕ). Noting ρ := (1− εt(g̃ϕ̃)/εt(gϕ))−1 and ỹ := g̃ϕ̃(x), F a large enough critic function space, we
adapt the theoretical analysis from (Bouvier et al. 2020):

εt(gϕ) ≤ ρ
(
εs(gϕ) + 8 sup

f∈F

{
E(zs,ys)∼p[y

s · f(zs)]− E(z,ỹ)∼q[ỹ
t · f(zt)]

}
+ inf

f∈F
εt(fϕ)

)
(6)

More precisely, F has the following properties (Bouvier et al. 2020):
• (A1) F is symmetric (i.e. ∀f ∈ F,−f ∈ F) and convex.
• (A2) G ⊂ F and {f · f ′ ; f, f ′ ∈ F} ⊂ F.
• (A3) ∀ϕ ∈ Φ, fD(z) 7→ ED[Y |ϕ(X) = z] ∈ F.
• (A4) For two distributions p and q on Z , p = q, and 1 ≤ c ≤ C, if and only if,

IPM(p, q;Fc) := sup
f∈F
{Ep[fc(Z)]− Eq[fc(Z)]} = 0 (7)

where fc is the c−th coordinate of f.
Crucially, by observing that supf∈F

{
E(zs,ys)∼p[y

s · f(zs)]− E(z,ỹ)∼q[ỹ
t · f(zt)]

}
is an Integral Probability Measure proxy

ofLCLIV, Eq. (6) reveals that class-level domain invariant representations can leverage feedback from an additional regularization,
here the Target Consistency, to learn more transferable invariant representations.

Eq. (6) is obtained by applying Bound 4 (Inductive Bias and Guarantee, equation 14) from (Bouvier et al. 2020) by leveraging
the inductive design:

εt(g̃ϕ̃) < εt(gϕ) (8)
provided by the Target Consistency. Note that, following the notations of (Bouvier et al. 2020), we have bounded the INV term
(defined in equation 8 (Bouvier et al. 2020)) by the TSF term (defined in equation 9 (Bouvier et al. 2020)) leading to 6TSF, were
TSF := supf∈F

{
E(zs,ys)∼p[y

s · f(zs)]− E(z,ỹ)∼q[ỹ
t · f(zt)]

}
in our case. Besides, the constant term is ρ := 1/(1− β), not

β/(1− β), since we bound εt(gϕ) not εt(g̃ϕ̃) where β := εt(g̃ϕ̃)/εt(gϕ).
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