Smooth Optimization of Orthogonal Wavelet Basis
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Abstract

Wavelets are a powerful tool for signal and image pro-
cessing tasks. They allow to analyze the noise level
separately at multiple scales and to adapt the denois-
ing algorithm accordingly. However, the performance
strongly rely on the choice of the wavelet basis. The
aim of this work is to learn the wavelet basis that is
adapted to both the denoising task and the class of
images at hand.We tackle this problem by a smooth
bilevel approach where the wavelet coefficients are op-
timized at the lower-level and the wavelet filters are
learned at the upper-level. Numerical experiments sup-
port the added benefits over classical wavelets.
Keywords: Bilevel optimization, wavelet denoising.

1 Introduction

Over the past decades, the discrete wavelet transform
has been widely used in numerous applications in sig-
nal and image processing ranging from denoising to
deblurring [DJ94] [PBBZP16], Mal08]. Wavelets bases
provide a mixed spatial-scale representation in which
non stationary processes can be represented by few co-
efficients. This has made wavelets very suitable for
compressing and denoising natural images. Hence-
forth, an active area of research has emerged to design
and to find the optimal wavelet bases for compacting
purposes.

Related works: Typical methods to design wavelets
mainly focus upon the wavelet function and its prop-
erties such as regularity, smoothness and symmetry.
In order to choose the wavelet adapted to some class
of images parametric models have been proposed such
as in [Thi04] where a lifting method is devised to cre-
ate a discrete wavelet similar to a given pattern. In
the same line of work, [HRCDO07|] provides a way to

determine the lifting parameters that yield the spars-
est wavelet coefficients according to the Gini Index.
We also point out the works of [LDHD02] [NKAT06]
which optimize the wavelet for classification purposes.
More recently, non parametric models have been de-
vised. In [Segl7, [RM18b, [RM18al, the discrete wavelet
transform is framed as a modified convolutional neu-
ral network and the wavelet filters are optimized by
backpropagation to promote sparsity under some ad-
missibility constraints. The optimization of the wavelet
filters has been recently addressed for image compres-
sion and denoising in [GP18]. The authors considered
the lasso model in the wavelet domain, also known as
wavelet soft-thresholding, to either reduce the number
of wavelet coefficients or to denoise the observation,
depending on the application. A minimization scheme
is then proposed to alternatively estimate the thresh-
olded wavelet coefficients and the wavelet basis which
minimize the lasso objective.

Contributions and outline: The main contribu-
tion of the paper is to frame the learning of orthog-
onal wavelet basis as a bilevel optimization problem.
Given some denoising task, the wavelet coefficients are
learned at the lower-level while the wavelet basis is
optimized at the upper-level by judging upon the esti-
mated wavelet coefficients. In addition, we make two
advances. The first is in terms of application since that,
contrary to [GP18], here the observations are corrupted
by a linear degradation. The second is algorithmic as
the bilevel framework of [ESP18, [ORBP16] is extended
by replacing the lower-level problem by a smooth pri-
mal forward-backward algorithm with Bregman dis-
tances. After some preliminaries reported in Section
we present in Section [3| the proposed bilevel optimiza-
tion problem. The smooth algorithmic solution is then
devised in Section [dl Deblurring experiments are con-
ducted in Section [5] on a benchmark image.



2 Wavelet denoising

In this section, we recall the basics of the discrete
wavelet transform and present the most popular vari-
ational problem for denoising in the wavelet domain.

2.1 Discrete wavelet transform

The principle of wavelet transform lies in multi-
resolution analysis where any given observation y € RY
is viewed through the scope at different resolutions
{279};21...5. Given a filter h € RE | the wavelet trans-
form of x, denoted by W (h)z, is the collection of details
coefficients d; and the coarse approximation ay, i.e.,

ydj(h),a;(h)]. (1)

These coefficients can be computed hierarchically
across the scales by successively applying low-pass and
high-pass filters [Mal08 Theorem 7.10)

W(h)a = [di(h),...

(Vp € [N],Vj € [J]), ajJer(h) = aj(h) * }j?Pv
djs1,p(h) = a;(h) * Gop(h),

(2)
where we have introduced the notation T, = Tx11—p.
This can be seen as a filter bank decomposition where
the approximation coefficient a;yi(h) (resp. details
coefficients dj;1(h)) can be computed by applying a
low-pass filter i (resp. high-pass filter g(h)) to a;(h)
followed by a down-sampling step. We now recall the
conditions on h and g(h) in order to yield an admissi-
ble wavelet representation with perfect reconstruction.
In particular, we restrict our study to the case where
g(h) is the quadrature mirror filter of h, ie., (Vk €
{1,...,K}), gp(h) = (=1)*hg_k—1 [CEGT6, Mal08].

Definition 2.1 (Admissible set of wavelet filters). Let
K € N, be the width of the wavelet support. Then, the
set of admissible wavelet filters is C = C; N Cy where
Ci = {heRF |1 h=+2, 1} g(h) =0} is a linear
constraint which includes normalization and smooth-
ness conditions while

K. 1

ng{heRK|(VpE{O,...,—}),§

3 Hs5h Osph = S0.20 )

encodes the orthogonality conditions through the ma-
trices Oy € REXK where (Ogp)iy; =2if j =2p+1
and 0 otherwise.

2.2 Denoising in the wavelet domain

In this section, we consider the inverse problem of re-
constructing an unknown original image 5 € RY from

an observation corrupted by linear and additive degra-
dations. We model the noisy image by y = Ay+e where
A € RY*N can be blurring operator and ¢ € RY is a
realization of white Gaussian noise.

A simple but efficient non-linear denoising estimator
can be obtained by regularizing the coefficients of the
noisy image in a well chosen basis. Here, we focus on an
orthogonal wavelet basis, which is efficient to denoise
piecewise regular images. We consider the problem of
finding Z(h) such that [BT09, PBBZP16]

1 _
#(h) = argmin Slly — AW (h) " a|* + Alzf, - (3)

zERN

where A > 0 is a regularization parameter acting as a
tradeoff between the amount of reconstruction and the
sparsity of the wavelet coeflicients.

3 Bilevel framework

The main goal of this paper is to investigate the ben-
efits of a bilevel scheme to additionally optimize Z(h)
over the wavelet filter h. In order to learn an admis-
sible wavelet filter h € C adapted to a class of images,
we propose to consider the following bilevel problem.

Problem 3.1. Given T noisy images y; € RY, t =
1...,T, a function E: RN — R and a regularization
parameter A > 0, solve

1 T
{u<h> == ZE@t(h))} LW
t=1

where C is given in Definition and, for every t €
{1,...,T}, the denoised wavelet coefficients T+(h) are
are given by

minimize
heC

N 1 _
Z¢(h) € argmin §||Z/t — AW (h) " x| + M=)
zERN

(5)

For instance, for E = || - |1, the upper objective U
in promotes wavelet filter h for which the denoised
coefficients, computed at the lower-level , are the
sparsest. Since we do not have a closed form expres-
sion for #;(h) but we rather have an iterative scheme
converging to Z4(h), we embrace the idea proposed
in [ESP18| and approximate &(h) = (£1(h),..., 27 (h))
by the Q-th iterate x(9). Here we propose to resort
to a smooth primal algorithm. The associated bilevel
problem that we are actually solving reads:



Problem 3.2. Given a mapping M, the set of con-
straints C of Definition[2-1) as well as a mazimum num-
ber of inner iterations Q@ € N, solve

T
nimi 1 (@
minimize {L[Q(h) =7 ;E(act (h))},

x(0)(0) is chosen arbitrarily
forq=0,1,...,Q —1
| 2@D(0) = M(22(6),0)

where

(6)

4 Algorithmic solution

In this section, we tackle the solving of Problem
The properties of the objective function ¢y depend on
the choice of algorithm @ minimizing the lower-level
objective in Problem [3.1] However, since the latter is
nonsmooth, the mapping M is usually nonsmooth as
well. In that case, computing a subgradient of Ug is a
challenge since it is the composition of multiple nons-
mooth functions. Designing a smooth algorithm is the
cornerstone of the proposed method and is presented
in Section The corresponding proposed bilevel op-
timization scheme is the subject of the next section.

4.1 Upper-level solver

In order to solve Problem we propose to resort to
the following subgradient descent algorithm

(Vnoe {1,..., nmax}), "D = Pe (h(") — ’ynsn> ,

(7)
where P¢ denotes the projection onto the set C in Def-
inition (Vn)n 18 a decreasing sequence of step-sizes
and s, € OUg(h™). On one hand, when z(@)(h)
is smooth, s, can be computed by using the basic
chain rule. On the other hand, since C is nonconvex,
any algorithm for projecting onto C might lead to a
sub-optimal solution. While a computationally intense
projection algorithm has been devised in [GP18], here
we suggest the following alternating projection algo-
rithm h < Pe, (Pe,(h)) [DLI8], where P, is an in-
exact projection onto Cy obtained by linearizing the
quadratic constraints, i.e.,

~ 1
Pe,(h) = argmin §||h —ol?

vERK

1
st.Vp€{0,...,K/2}, §hToz,,thogp(v_h) = 00.2p-

4.2 Smooth lower-level solver

We now turn to solving by a smooth algorithm.
Without loss of generality, we can deal with a single
observation omitting the index t. By splitting the vari-
able x into positive and negative parts, z = zt — 2~
with 2T > 0 and = > 0, the ¢; regularization term
can be expressed as 1T A\(zT +1T27) which is linear in
xzT and z~. Therefore, can be rewritten as the fol-
lowing bound-constrained quadratic program [FNWO07]

1
minimize c(h) x4+ =x" B(h)x,
XER?X 2

f(xh)

(8)

where x = [zF;27], ¢(h) = AL + [-H(h) Ty; H(h) Ty],
H(h) = AW (h)~! and

H(h)"H(h)
—H(h)TH(h)

—H(h) " H(h)

Blh) = H(h) H(h)

(9)

While can be solved by gradient projection meth-
ods, they involve a projection onto the non-negative
orthant at each interation, thus making the algorithm
nonsmooth. We point out that these methods can be
seen as particular instances of the forward-backward al-
gorithm with Bregman distances [BBT16L [VNT7] where
the Legendre function ® defining the Bregman distance
is the squared norm 1| - ||>. In order to find a smooth
algorithm, we consider an interior point variant where
® is e-strongly convex and dom® = Rilg . By elab-
orating on [BBT16, VN17], we consider the following
algorithm

x(9(h) € int dom ®

forg=0,1,...,Q -1

| x(@tD(h) = V&* (VO(x( (h)) — vV f(x(9(h), h))
2@ (h) = xR (h) = x P on (D)

which converges for any step-size 0 < v < ¢/||B|2-
Note that since W(h) is orthonormal, we have that
|Blla = 2||ATA|2. We propose to resort to the
Burg’s entropy ®: x +— Ziﬁl o(x,) where ¢: ¢ +—
—logt+ (€/2)t?, for which (Vt € R), ¢'(t) = (et* — 1)/t
and ¢*(t) = (¢t + vVt + 4e)/2e. Note that for such
choice dom® = Rijg . Thus the resulting algorithm
only yields an approximate solution of . We sug-
gest to initialize x(%) = 1/,/elyn so that to enforce
Vo (x(0) = 0yy.



Figure 1: From left to right: original, noisy and reconstructed images by the proposed method, db16, sym16

and coif6.
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Figure 2: Comparison with standard wavelets filters.

5 Experiments

Experimental setting We consider a bitmap gray
version of the Lena imageﬂ denoted by y and made
of N = 512 x 512 pixels as well as its noisy version
y = Ay + € where € is a realization of Gaussian noise
of standard deviation 0.05 and A denotes a Gaussian
blur of width 15 and standard deviation 3. Both the
original and noisy image are displayed in Fig[l] The
wavelet length is set to K = 32 and the wavelet filter is
initialized from some Gaussian noise € ~ N (0g,1) by
projecting it into C, i.e., h(®) = P¢(e). We considered
5 different realizations of random noise and picked the
one which minimizes the upper-level objective in Prob-
lem[3:2] The proposed method is compared against the
following classical wavelets: Daubechies (db16), symlet
(sym16) and coiflets (coif5 and coif6). We choose J = 4
decomposition layers and we ran the experiments for
10 values of A equally spaced, in a log;,-scale, between
1072 and 10~ 1.

Quantification of performance. The benefits of us-
ing a particular wavelet basis is quantified by two
measures: the peak signal-to-noise ratio of the recon-
structed image (PSNR) and the density || - ||o/N of the
wavelet coefficients. As \ varies, we report the corre-
sponding performance in Figure 2] Overall, it shows
that the learned wavelet permits to achieve a higher

Thttp://eeweb.poly.edu/~yao/EL5123/image/lena_gray.
bmp
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Figure 3: Learned low-pass and high-pass filters.

PSNR with fewer wavelet coefficients than the classi-
cal wavelets. The closest is coif6 a lower density is at-
tained at the price of a small decrease in PSNR. Since
the PSNR does not capture how well edges are recov-
ered, we also report in Fig. 1| the reconstructed images
for deblurring. A visual inspection shows that the pro-
posed method better reconstructs the edges, notably
around the mouth, nose and the hat.

In addition, we report in Fig. [ the learned wavelet fil-
ters. We remark that they strongly look like those of
the coiflet while we learned them from random noise.

6 Conclusion

In this work, we have proposed a bilevel framework
for learning orthogonal wavelets adapted to some given
task. While we have considered image deblurring and
reconstruction, the proposed method could also be ex-
tended to other purposes provided that a smooth algo-
rithm can be devised. In addition, although the cor-
responding bilevel optimization problem is nonconvex,
we are able learn wavelets from random noise which
perform equally well to classical wavelets resulting from
years of mathematical modeling. Perspectives include
the extension to biorthogonal and anisotropic wavelets.
More interestingly, the proposed framework paves the
way to smooth deep unfolding techniques where the
dictionary W (h) could vary at each iteration.


http://eeweb.poly.edu/~yao/EL5123/image/lena_gray.bmp
http://eeweb.poly.edu/~yao/EL5123/image/lena_gray.bmp
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