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Abstract
We propose a framework using contrastive learning as a pre-
training task to perform image classification in the presence
of noisy labels. Recent strategies such as pseudo-labelling,
sample selection with Gaussian Mixture models, weighted
supervised contrastive learning have been combined into
a fine-tuning phase following the pre-training. This paper
provides an extensive empirical study showing that a pre-
liminary contrastive learning step brings a significant gain
in performance when using different loss functions: non
robust, robust, and early-learning regularized. Our exper-
iments performed on standard benchmarks and real-world
datasets demonstrate that: i) the contrastive pre-training in-
creases the robustness of any loss function to noisy labels
and ii) the additional fine-tuning phase can further improve
accuracy, but at the cost of additional complexity.

1 Introduction
Collecting large and well-annotated datasets for image clas-
sification tasks represents a challenge as human quality an-
notations are expensive and time-consuming. Alternative
methods exist, such as web crawlers [24]. Nevertheless,
these methods generate noisy labels decreasing the perfor-
mance of deep neural networks. They tend to overfit to noisy
labels due to their high capacity [41]. That is why devel-
oping efficient noisy-label learning (NLL) techniques is of
great importance.

Various strategies have been proposed to deal with NLL:
i) Noise transition matrix [8, 30, 38] estimates the noise
probability and corrects the loss function, ii) a clean subset
can help to avoid overfitting [13], iii) samples selection
identifies true-labeled samples [9, 14, 19], and iv) robust loss
functions solve the classification problem only by adapting
the loss function to be less sensitive to noisy labels [23, 34,
43]. Methods also combine other strategies (eg. ELR+ [19],
DivideMix [22]): two networks, semi-supervised learning,
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label correction, or mixup. They show the most promising
results but lead to a large number of hyperparameters. That
is why we explore improvement strategies for robust loss
functions. They are simpler to integrate and faster to train,
but as illustrated in Figure 1, they tend to overfit and have
lower performance for high noise ratios.
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Figure 1: Overfitting patterns on 3 losses when training
classifiers with noisy labels. The plot depicts top-1 accu-
racy for ResNet18 trained on the CIFAR-100 dataset with
a symmetric noise (80%) for three losses: Cross Entropy
(CE), Normalized Focal Loss + Reverse CE (NFL+RCE),
and Early Learning Regularization (ELR).

Meanwhile, new self-supervised learning algorithms for
image representations have been recently developed [4, 11].
Such algorithms extract representation (or features) in unsu-
pervised settings. These representations can then be used for
downstream tasks such as classification. Methods based on
contrastive learning compete with fully supervised learning
while fine-tuning only on a small fraction of all available
labels. Therefore, using contrastive learning for NLL ap-
pears as promising. In this work, contrastive learning aims
to pre-train the classifier to improve its robustness.

The key contributions of this work are:

• A framework increasing robustness of any loss function
to noisy labels by adding a contrastive pre-training task.

• The adaptation of the supervised contrastive loss to use
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sample weight values, representing the probability of
correctness for each sample in the training set

• An extensive empirical study identifying and bench-
marking additional state of the art strategies to boost the
performance of pre-trained models: pseudo-labeling,
sample selection with GMM, and weighted supervised
contrastive learning.

2 Related works
Existing approaches dealing with NLL and contrastive learn-
ing in computer vision are briefly reviewed. Extra details
can be found in Le-Khac et al. [18], Song et al. [33].

2.1 Noise tolerant classification
Sample Selection: This method identifies noisy and clean
samples within the training data. Several strategies leverage
the interactions between multiple networks to identify the
probably correct labels [9, 14, 19]. Recent works [1, 32] ex-
ploit the small loss trick to identify clean and noisy samples
by considering a certain number of small-loss training sam-
ples as true-labeled samples. This approach can be justified
by the memorization effect: deep neural networks first fit
the training data with clean labels during a so-called early
learning phase, before overfitting the noisy samples during
the memorization phase [2, 22].

Robust Loss Function: Commonly used loss functions,
such as Cross Entropy (CE) or Focal Loss, are not robust to
noisy labels. Therefore, new loss functions have been de-
signed. Such robust loss functions can be easily incorporated
into existing pipelines to improve performance regarding
noisy labels. The symmetric cross entropy [34] has been
proposed by adding a reverse CE loss to the initial CE. This
combination improves the accuracy of the model compared
to classical loss functions. Ma et al. [23] show theoretically
that normalization can convert classical loss functions into
loss functions robust to noise labels. The combination of two
robust loss functions can also improve robustness. However,
the performance of normalized loss functions remains quite
low for high noise rates as illustrated in Figure 1.

Semi-supervised: Semi-supervised approaches deal with
both labeled and unlabeled data. Recent works [19, 27, 35]
combine sample selection with semi-supervised methods:
the possibly noisy samples are treated as unlabeled and
the possibly clean samples are treated as labeled. Semi-
supervised approaches show competitive results. However,
they use several hyperparameters that can be sensitive to
changes in data or noise type [28, 33].

Contrastive learning: recent developments in self-
supervised and contrastive learning [20, 28, 42] inspire new

approaches in NLL. Li et al. [20] employed features learned
by contrastive learning to detect out-of-distribution samples.

2.2 Contrastive learning for vision data
Contrastive learning extracts features by comparing different
samples. The central idea is to bring different instances of the
same input image closer and spread instances from different
images apart. The inputs are usually divided into positive
(similar) and negative pairs (dissimilar). Data augmentation
is typically used to create positive pairs. Frameworks have
been recently developed, such as CPCv2 [12], SimCLR [4],
Moco [11]. Once the self-supervised model is trained, the
extracted representations can be used for downstream tasks,
such as classification in this work.

Chen et al. [4] demonstrate that large sets of negatives
(and large batches) are crucial in learning good representa-
tions. However, large batches are limited by GPU memory.
Maintaining a memory bank accumulating a large number
of negative representations is an elegant solution decoupling
the batch size from the number of negatives [25]. Never-
theless, the representations get outdated in a few iterations.
The Momentum Encoder [11] addresses the issues by gen-
erating a dynamic memory queue of representations. Other
strategies aim at getting more meaningful negative samples
to reduce the memory/batch size [15].

3 Preliminaries
Let D = {(xi, yi)}i=1..n,xi ∈ Rd, yi ∈ {1, · · · ,K} de-
note a noisy input dataset with an unknown number of sam-
ples incorrectly labelled. The associated true and unobserv-
able labels are written yi. The images xi are of size d and
the classification problem has K classes. The goal is to train
a deep neural network (DNN) f . Using a robust loss function
for training consists of minimizing the empirical risk defined
by robust loss functions in order to find the set of optimal pa-
rameters θ. The one-hot encoding of the label is denoted by
the distribution q(k|x) for a sample x and a class k, such as
q(yi|xi) = 1 and q(k 6= yi|xi) = 0, ∀i ∈ {1, · · · , n}. The
probability vector of f is defined by the softmax function
p(k|x) = ezk∑K

j=1 e
zj

where zk denotes the logits output with

respect to class k.

3.1 Classification with robust loss functions
Our method employs noise-robust losses to train the clas-
sifier in the presence of noisy labels. Such losses improve
the classification accuracy compared to the commonly used
CE, as illustrated in Figure 1. In this section, the gen-
eral empirical risk for a given mini-batch is defined by
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L =
∑N
i=1 L(f(xi), yi) =

∑N
i=1 li . The term li is modi-

fied by each loss function.
The classical CE is used as a baseline loss function not

robust to noisy labels [7] and is defined as:

lce = −
K∑
k=1

q(k|xi)log(p(k|xi)). (1)

As presented in section 2, Ma et al. [23] introduce robust
loss functions called Active Passive Losses that do not suffer
from underfitting. We investigate the combination between
the Normalized Focal Loss (NFL) and the Reversed Cross
Entropy (RCE) called NFL+RCE. It shows promising results
on various benchmarks. The NFL is defined as:

lnfl =

−
K∑
k=1

q(k|xi)(1− p(k|xi))
γ log(p(k|xi))

−
K∑
j=1

K∑
k=1

q(y = j|xi)(1− p(k|xi))γ log(p(k|xi))

,

(2)
where γ ≥ 0 is an hyperparameter. The RCE loss is:

lrce = −
K∑
k=1

p(k|xi)log (q(k|xi)) . (3)

where q(k|xi) = 0 is truncated to a small value such that
log(q(k|xi)) = −4. The combination lnfl+rce following
the framework simply gives a different weights α and β to
each loss: α.lnfl + β.lrce. The hyperparameters α and β
control the balancing between active and passive learning.
For simplicity, they are set to 1.0 without any tuning.

Liu et al. [22] propose another framework to deal with
NLL based on the “early learning” phase. The loss, called
Early Learning Regularization (ELR), adds a regularization
term to capitalize on early learning. ELR is not strictly
speaking a robust loss but belongs to robust penalization and
label correction methods. The penalization term corrects
the CE based on estimated soft labels identified with semi-
supervised learning techniques. It prevents memorization of
false labels by steering the model towards these targets:

lelr = lce +
λelr
N

log

(
1−

K∑
k=1

p(k|xi)t(k|xi)

)
. (4)

The target is not set equal to the model output but is estimated
with a temporal ensembling from semi-supervised methods.
Let t(k|xi)

(l) denote the target for example xi at iteration l
of training with a momentum β:

t(k|xi)
(l) = βt(k|xi)

(l−1) + (1− β)p(k|xi)
(l). (5)

3.2 Contrastive learning
Contrastive learning methods learn representations by con-
trasting positive and negative examples. A typical framework
is composed of several blocks [6]:

• Data augmentation: It decouples the pretext tasks from
the network architecture. Chen et al. [4] study broadly
the impact of data augmentation. We follow their sug-
gestion combining random crop (and flip), color distor-
tion, Gaussian blur, and gray-scaling.

• Encoding: The encoder extracts features (or representa-
tion) from augmented data samples. A classical choice
for the encoder is the ResNet model [10] for image
data. The final goal of the contrastive approach is to
find correct weights for the encoder.

• Loss function: The loss function usually combines pos-
itive and negative pairs. The Noise Contrastive Estima-
tion (NCE) and its variants are popular choices. The
general formulation for such loss function is defined
for the i-th pair as [37]:

Li = −log
exp(zTi zj(i)/τ)∑
a∈A(i) exp(z

T
i za/τ)

, with i ∈ I, (6)

where z is a feature vector, I is the set of indexes in the
mini-batch, i is the index of the anchor, j(i) is the index
of an augmented version of the anchor source image,
A(i) = I \ {i}, and τ is a temperature controlling the
dot product. The denominator includes one positive
and K negative pairs.

• Projection head: That step is not used in all frame-
works. The projection head maps the representation to
a lower-dimensional space and acts as an intermediate
layer between the representation and the embedding
pairs. Chen et al. [4, 5] show that the projection head
helps to improve the representation quality.

4 A framework coupling contrastive
learning and noisy labels

As illustrated in Figure 2, our method classifies noisy sam-
ples in a two phased process. First, a classifier pre-trained
with contrastive learning produces train-set pseudo-labels
(pre-training phase, in panel a), used during the training of
a subsequent fine-tuning phase (panel b). The underlying
intuition is that the predicted pseudo-labels are more accu-
rate than the original noisy labels. The contrastive learning
performed in the first phase (panel a1) improves the classifier
(panel a2), sensitive to noisy labels; the resulting model can
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be also used in a standalone way with a reduced number of
hyperparameters, without the underlying fine-tuning phase.

The second phase leverages the pseudo-labels predicted by
the pre-training in all underlying steps (b1-b3). To mitigate
the effect of potentially incorrectly predicted pseudo-labels,
a Gaussian Mixture Model (GMM, panel b1) with 2 compo-
nents follows the small loss-trick to predict for each sample
the probability of correctness. This value is used as a weight
in a supervised contrastive step (panel b2), performed to im-
prove the learned representations by taking advantage of the
label information. A classification head is added to the con-
trastive model in order to produce the final predictions (panel
b3). The fine-tuning phase can be seen as an adaptation of
the pre-training phase to handle pseudo-labels.

    (b) Fine-tuning phase

(a) Pre-training phase

(a1) Unsupervised
Contrastive

(a2) Classification

Noisy labels

(b1) GMM
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Figure 2: Overview of the framework consisting of two
phases: pre-training (panel a) and fine-tuning (panel b). First,
a contrastive learning phase (a1) is performed to pre-train
the model in an unsupervised way for a classification phase
(a2) which then predicts train-set pseudo-labels ŷ. The fine-
tuning phase uses ŷ as a new ground truth. A GMM model
(b1) predicts the probability of correctness for each sample,
used as a corrective weight factor in a supervised contrastive
training (panel b2). The final predictions ŷfinal are produced
by the (b3) classifier.

To maximize the impact of the contrastive learning on
the underlying classification, the supervised training is per-
formed in 2 steps: a warm-up step, updating only the clas-
sifier layer (while keeping the encoder frozen) is followed
by the full model training. We compared three different loss
functions for the supervised classification: the classical CE,
the robust NFL+RCE, and the ELR loss.

4.1 Sample selection and correction with
pseudo-labels

Pseudo labels represent one hot encoded model’s predic-
tions on the training set. Pseudo-labels were initially used
in semi-supervised learning to produce annotations for un-
labelled data; in the noisy label setting, various techniques
(e.g. DivideMix, etc) identify a subset with a high likeli-
hood of correctness and treat the remaining samples as the
unlabeled counterpart in semi-supervised learning. In this
work, we elaborate on the observation that the training set
labels, predicted after training the model with a noise-robust
loss function (i.e. the pseudo labels), are more accurate than
the ground truth. This observation is supported by the re-
sults in Figure 3, depicting the accuracy of pseudo labels
predicted on CIFAR100, contaminated with various levels
of asymmetric (panel a) and symmetric (panel b) noise. The
pseudo labels are more accurate than the corrupted ground
truth in both settings and bring a higher gain in performance
as the noise ratio increases.
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Figure 3: Accuracy of pseudo labels on all simulated set-
tings with asymmetric (a) and symmetric (b) noise, evaluated
on CIFAR100. The correctness of the ground truth is repre-
sented on the x axis, while the accuracy of predicted pseudo
labels on the y axis. In all experiments, the pseudo labels
have a higher accuracy than the corrupted ground truth and
this gain increases with the noise ratio.
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Figure 4: Accuracy of the entire training set (in blue) com-
pared to the clean train subset (in red); The clean subset’s
percentual size is depicted in green. The example is per-
formed on CIFAR100, with 40% symmetric noise.

As proposed by other approaches [1], the loss value on
train samples can be used to discriminate between clean and
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mislabeled samples. The sample correctness probability is
computed by fitting a 2 components GMM on the distribu-
tion of losses [19]. The underlying probability is used as
a sample weight wi = p(k = 0|li), where li is the loss for
sample i and k = 0 is the GMM component associated to the
clean samples (lowest loss). Figure 4 depicts the evolution
of the clean training set identified by GMM on an example:
its accuracy grows from 0.6 to 0.93 while the size stabilizes
at 60% of the training set.

4.2 Weighted supervised contrastive learning
A modification to the contrastive loss defined in Equation 6
has been proposed to leverage label information [16]:

Li = −log
1

|P (i)|
∑
p∈P (i)

exp(zTi zp/τ)∑
a∈A(i) exp(z

T
i za/τ)

, (7)

where P (i) = {j ∈ I \ {i}, yj = ỹi} with ỹi the prediction
of the model for input xi.

As explained in the previous section, the loss value for the
training set samples is used to fit a GMM with 2 components,
corresponding to correctly and incorrectly labeled samples.
We adapted the supervised representation loss to employ
w, a weighting factor representing the sample probability
of membership to the correctly labeled component. Thus,
likely mislabeled samples having large loss values would
contribute only marginally to the supervised representations:

Li = −log
1

|P (i)|
∑
p∈P (i)

w̃p,iexp(z
T
i zp/τ)∑

a∈A(i) exp(z
T
i zp/τ)

, (8)

where w̃p,i is a modified version of wp such as w̃p,i = 1 if
p = j(i) else w̃p,i = wi. If all samples are considered as
noisy, Equation 8 is simplified into the classical unsupervised
contrastive loss in Equation 6.

5 Experiments
The framework is assessed on three benchmarks and the
contribution of each block identified in Figure 2 is analyzed.

5.1 Datasets
CIFAR10 and CIFAR100 [17]. These experiments assess
the accuracy of the method against synthetic label noise. The
two datasets are contaminated with simulated symmetric or
asymmetric label noise reproducing the heuristic in Ma et al.
[23]. The symmetric noise consists in corrupting an equal
arbitrary ratio of labels for each class. The noise level varies
from 0.2 to 0.8. For asymmetric noise [22, 30], sample

labels have been flipped within a specific set of classes,
thus providing confusion between predetermined pairs of
labels. For CIFAR100, 20 groups of super-classes have been
created, each consisting of 5 sub-classes. The label flipping
is performed only within each super-class circularly. The
asymmetric noise ratio is explored between 0.2 and 0.4.

Webvision [21]. This is a real-world dataset with noisy
labels. It contains 2.4 million images crawled from the web
(Google and Flickr) that share the same 1,000 classes from
the ImageNet dataset. The noise ratio varies from 0.5%
to 88%, depending on the class. In order to speed-up the
training time, we used mini Webvision [14], consisting of
only top 50 classes in the Google subset (66,000 images).

Clothing1M [39]. Clothing 1M is a large real-world
dataset consisting of 1 million images on 14 classes of cloth-
ing articles. Being gathered from e-commerce websites,
Clothing1M embeds an unknown ratio of label noise. Ad-
ditional validation and test sets, consisting of 14k and 10k
clean labeled samples have been made available. In order to
speed-up the training time, we selected a subset of 56,000
images keeping the initial class distribution.

Both Webvision and Clothing1M images were resized to
128× 128. Therefore, the reported results may differ from
other papers cropping the images to a 224× 224 resolution.

5.2 Settings

We use the contrastive SimCLR framework [4] with a
ResNet18 [10] (without ImageNet pre-training) as encoder.
A projection head is added after the encoder for the con-
trastive learning with the following architecture: a multi-
layer perceptron with one hidden layer and a ReLu non-
linearity. The classifier following the contrastive step has a
simple multilayer architecture: a single hidden layer with
batch normalization and a ReLU activation function.

For all supervised classification, we use SGD optimizer
with momentum 0.9 and cosine learning rate annealing. The
NFL hyperparameter γ is set to 0.5. Unlike the original
paper, the ELR hyperparameters do no depend on the noise
type: the regularization coefficient λelr and the momentum
β are set to 3.0 and 0.7.

All codes are implemented in the PyTorch framework [29].
The experiments for CIFAR are performed with a single
Nvidia TITAN V-12GB and the experiments for Webvision
and Clothing1M are performed with a single Nvidia Tesla
V100-32GB, demonstrating the accessibility of the method.
All experiments presented in the next section evaluate our
method’s performance with the top-1 accuracy score.
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6 Results

6.1 Impact of contrastive pre-training

To evaluate the impact of the contrastive pre-training on
the classification model, the proposed method (pre-training
phase) is compared with a baseline classifier, trained for
200 epochs without contrastive learning. For each simulated
dataset, we compare robust losses (e.g. NLF+RCE and ELR)
and cross entropy. Results for CIFAR10 and CIFAR100
are depicted in Table 1 for different levels of symmetric and
asymmetric noise. The pre-training improves the accuracy of
the three different baselines for both datasets with different
types and ratios of label noise. The largest differences are
observed for the noisiest case with 80% noise. The pre-
training outperforms the baselines by large margins between
10 and 75 for CIFAR10 and between 5 and 30 for CIFAR100.

Table 1: Accuracy for CIFAR10 and CIFAR100 using sym-
metric (0.2 - 0.8) and asymmetric noise (0.2 - 0.4). Training
from scratch or from pre-trained representations. Best scores
are in bold for each noise scenario and each loss.

CIFAR10 CIFAR100
Type η Loss Base Pre-t. Base Pre-t.

Sym

0.2
ce 77.2 87.7 55.6 56.5
elr 90.3 93.0 64.1 67.4
nfl+rce 91.0 92.7 66.6 68.8

0.4
ce 58.2 78.0 39.9 41.9
elr 82.3 92.0 56.9 62.0
nfl+rce 87.0 91.4 60.2 66.3

0.6
ce 35.2 59.2 21.8 26.8
elr 64.2 90.4 40.6 55.7
nfl+rce 80.2 88.1 47.0 61.8

0.8
ce 17.0 27.3 7.80 12.4
elr 18.3 84.8 16.2 45.3
nfl+rce 42.8 59.9 20.1 50.2

Asym

0.2
ce 84.0 87.9 59.0 57.8
elr 91.8 92.4 70.3 70.2
nfl+rce 90.2 91.5 63.9 68.4

0.3
ce 79.2 83.9 50.6 50.4
elr 89.6 91.7 69.8 69.3
nfl+rce 86.7 89.9 53.5 63.5

0.4
ce 75.3 77.8 41.8 42.4
elr 72.3 89.5 67.6 67.6
nfl+rce 80.0 82.4 40.6 47.8

In addition to the comparisons with ELR and NFL+RCE,
performed using our implementations (column Base in Ta-
ble 1), we present the results reported by other recent compet-
ing methods. As shown in the introduction, numerous con-
tributions have been made to the field in the last years. Six

Table 2: Accuracy scores compared with 6 methods on CI-
FAR10 (C10) and CIFAR100 (C100). The cases most af-
fected by dropout are presented, with symmetric (S) and
asymmetric (A) noise. Top-2 scores are in bold

C10
80% S

C10
40% A

C100
80% S

C100
40% A

Ours
(ELR) 84.8 89.5 45.3 67.6

ELR [22] 73.9 91.1 29.7 73.2
Taks [31] 40.2 73.4 16.0 35.2
Co-teach+ [40] 23.5 68.5 14.0 34.3
DivideMix [19] 92.9 93.4 59.6 72.1
SELF [27] 69.9 89.1 42.1 53.8
JoCoR [36] 25.5 76.1 12.9 32.3

recent representative methods are selected for comparison:
Taks [31], Co-teaching+ [40], ELR [22], DivideMix [19],
SELF [27], and JoCoR [36]. The results are presented in Ta-
ble 2. The difference between the scores reported by ELR
and those obtained with our run (using the same implementa-
tion, but slightly different hyper-parameters and a ResNet34
versus ResNet18) suggests that the method is less stable on
data contaminated with asymmetric noise and sensitive to
small changes hyperparameters. Moreover, ELR proposes
hyperparameters having different values depending on the
type of dataset (i.e. CIFAR10/CIFAR100) and underlying
noise (i.e. symmetric/asymmetric), identified after a hyper-
parameter search exercise. The best scores are reported by
DivideMix and they surpass all other techniques. One can
note DivideMix uses a PreAct ResNet18 while we use a clas-
sical ResNet18. Moreover, a recent study [28] attempted to
replicate these values and reported significantly lower results
on CIFAR100 (i.e. 49.5% instead of 59.6% on symmetric
data and 50.9% instead of 72.1% on asymmetric data). Our
framework compares favourably with the other competing
methods, both on symmetric and asymmetric noise.

Webvision and Clothing1M results are presented in Ta-
ble 3. The contrastive framework outperforms the respective
baselines for the three loss functions. Because the images
have a reduced size, and for Clothing1M, we use a smaller
training set, the direct comparison with competing methods
is less relevant. However, the observed gap in performance
is significant and promising for training images with higher
resolution. Moreover, a ResNet50 model has been trained
with our framework on the Webvision dataset with a higher
resolution (224× 224). The accuracy reaches respectively
75.7% and 76.2% for CE and ELR. These results are very
close to the values reported with DivideMix (77.3%) and
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ELR+ (77.8%) using a larger model, Inception-ResNet-v2
(the difference is 4% on the ImageNet benchmark [3]).

Table 3: Top-1 accuracy for mini-Webvision and Cloth-
ing1M. Best scores are in bold for each dataset and each
loss. Pre-t represents the pre-training phase while Fine-tune
refers to the results after the fine-tuning step.

Webvision Clothing1M
Loss Base. Pre-t. Fine-

tune
Base. Pre-t. Fine-

tune
ce 51.8 57.1 58.4 54.8 59.1 61.5
elr 53.0 58.1 59.0 57.4 60.8 60.4
nfl+rce 49.9 54.8 58.2 57.4 59.4 60.1

Supported by this first set of experiments, the preliminary
pre-training with contrastive learning shows great perfor-
mances. The accuracy of both traditional and robust-loss
classification models is significantly improved.

6.2 Sensitivity to the hyperparameters

Estimating the best hyperparameters is complex for datasets
with noisy labels as clean validation sets are not available.
For instance, Ortego et al. [28] show that two efficient meth-
ods (eg. ELR and DivideMix) could be sensitive to specific
hyperparameters. Therefore a hyperparameter sensitivity
study has been carried out to estimate the stability of the
framework for the learning rate. Figure 5 depicts the sensitiv-
ity on CIFAR100 with 80% noise. CE and NFL+RCE seem
to have opposite behaviors. The CE reaches competitive
results with small learning rates but is prompt to overfitting
for higher learning rates. The NFL+RCE loss tends to un-
derfitting for the lowest learning rates but is quite robust for
higher values. The ELR loss has the smallest sensitivity to
the learning for the investigated range but does not reach the
best values obtained with CE or NFL+RCE. We can assume
that the regularization term coupled with pre-training is very
efficient. It prevents memorization of the false labels as
observed with CE.

This sensitivity analysis is limited to the learning rate. In-
vestigating the impact of other hyperparameters, such as the
momentum β or the regularization factor λelr, could be in-
teresting. In their original papers, ELR and NFL+RCE reach
respectively 25.2% and 30.3% with other hyperparameters.
These values are still far from the improvements brought by
the contrastive pre-training but it suggests that the results
could be improved with different hyperparameters.

Our empirical results indicate that the analyzed methods
may be sensitive to hyperparameters. Despite the promised
robustness to label noise, the analyzed robust losses are
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Figure 5: Learning rate sensitivity for CIFAR100 with
80% noise. The explored learning rate values are
{0.001, 0.01, 0.1, 1.0}. The baseline (dashed line) is com-
pared with our framework (solid line).

also affected by overfitting or underfitting. Our experiments
have been built upon the parameters recommended in each
issuing paper (e.g. ELR, SIMCLR) but, since the individual
building blocks can be affected by small variations in input
parameters, the performance of our method may also be
impacted. Finding a relevant method to estimate proper
hyperparameters in NLL remains a challenge. In the absence
of a clean validation set, identifying when overfitting starts
also remains an open challenge.

6.3 Impact of the fine-tuning phase

Experimental results on synthetic label noise, depicted in Fig-
ure 6, show that continuing the presented pre-training block
(Figure 2) with the fine-tuning phase increases the accuracy
in over 65% of cases on CIFAR10 and over 80% of cases
on CIFAR100. For both datasets, asymmetric noise data
benefit more from this approach than symmetric noise. All
experiments only use the input parameters proposed in the
loss-issuing papers.

The sample selection has also got a positive impact on the
two real-world datasets, as shown in Table 3 by the ”Fine-
tune” columns. The average accuracy improvement is about
1.8%. Only the ELR loss function slightly decreases the
performance on Clothing1M.

Enriching pretrained models with sample weighting and
selection, pseudo labels instead of corrupted targets, and
supervised contrastive pre-training can improve the classi-
fication accuracy. However, such an approach raises the
question of a trade-off between complexity, accuracy im-
provement, and computation time.

7 Discussion

In addition to the presented fine-tuning phase, we evalu-
ated the performance of other promising techniques, such
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Figure 6: Accuracy gain when performing the fine-tuning
phase after the pre-training block (computed as the differ-
ence between fine-tuning accuracy and pre-training accu-
racy). The plot gathers the results for all noise ratios on
CIFAR10 (panels a, b) and CIFAR100 (c, d) with symmetric
(first column) and asymmetric (second column) noise.

as the dynamic bootstrapping with mixup [1]. This strat-
egy has been developed to help convergence under extreme
label noise conditions. The improvement that dynamic boot-
straping can bring when used after pre-training is depicted
in Figure 7. In most of the cases, this technique improves the
accuracy, as indicated by the positive accuracy gain scores,
measuring the difference between the accuracy after dynamic
bootstraping and the accuracy of the pre-training phase. ELR
and CE benefit most from this addition for CIFAR100. The
impact of the dynamic boostrapping should also be analyzed
for the fine-tuning phase and for larger datasets, such as
Webvision or Clothing1M.
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Figure 7: Gain for the dynamic bootstrapping (CIFAR100)
with asymmetric (a) and symmetric noise (b). Bootstrapping
is an alternative to the proposed fine-tuning phase. Each
color is associated to a noise ratio.

One of the major drawbacks of our method is the extra
computational time needed to learn representations with
contrastive learning. The pre-training phase doubles the
execution time of a reference baseline, consisting of per-
forming only a single classification step, while the entire

framework increases the execution time 3 to 4 times the
baseline value. However, the constrastive learning does not
increase the need for GPU memory if the batch size is lim-
ited for the contrastive learning [11, 26]. The computational
time could be reduced by initializing the contrastive step
with the pretrained weights from ImageNet.

Most state-of-the-art approaches also leverage computa-
tionally expensive settings, consisting of larger models (e.g.
ResNet50), dual model training, or data augmentation such
as mixup. In this work, we explored the limits of a restricted
computational setting, consisting of a single GPU and 8GB
RAM. All experiments use a ResNet18 model, batch sizes
of 256, and for real-world datasets, the images have been
rescaled (e.g. 128 × 128 instead of 224 × 224). We also
foresee that the constrastive learning step could be improved
by images with higher resolutions as smaller details could
be identified in the representation embedding.

There remain multiple open problems for future research,
such as: i) identifying the start of the memorization phase
in the absence of a clean dataset, ii) studying the impact of
contrastive learning on other models for noisy labels such as
DivideMix, iii) comparing SimCLR approach in the context
of noisy labels with other contrastive frameworks and other
self-supervised approaches, and iv) having a better theoreti-
cal understanding of the interaction between the initial state
precomputed with contrastive learning and the classifier in
presence of noisy labels. Moreover, the analysis carried out
in this work should be validated on larger settings, in par-
ticular on Clothing1M with a ResNet50, higher resolutions,
and the full dataset.

8 Conclusions

In this work, we presented a contrastive learning framework
optimized with several adaptations for noisy label classi-
fication. Supported by an extensive range of experiments,
we conclude that a preliminary representation pre-training
improves the performance of both traditional and robust-
loss classification models. Additionally, multiple techniques
can be used to fine-tune and further optimize these results;
however, no approach provides a significant improvement
systematically on all types of datasets and label noise. The
cross-entropy penalized by Early-Learning Regularization
(ELR) shows the best overall results for synthetic noise but
also real-world datasets.

However, the training phases remain sensitive to input
configuration. Overfitting is the common weakness of all
studied models. When trained with tuned parameters, even
traditional (cross-entropy) models provide competitive re-
sults, while robust-losses are less sensitive. The typical
noisy label adaptations, such as sample selection or weight-
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ing, the usage of pseudo labels, or supervised contrastive
losses, improve the performance to a lesser extent but in-
crease the framework’s complexity. We hope that this work
will promote the use of contrastive learning to improve the
robustness of the classification process with noisy labels.
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