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Abstract

Finding the exact robust test error is a good way to as-
sess neural networks, but it is a difficult task even on small
networks and datasets like MNIST. On the one hand, com-
prehensive methods such as Mixed Integer Program (MIP)
give exact robust test accuracy but are time-consuming.
On the other hand, many popular attacks are fast but tend
to perform poorly against robust networks and only pro-
vide a bound on the robust test error. The purpose of this
paper is to present a fast and novel attack method called
LiPPA, that gives better bounds than previous attacks.
This method exploits the algebraic properties of networks
with piecewise linear activation functions to partition the
input space in such a way that for each subset of that parti-
tion, finding the local optimal adversarial example is done
by solving a linear program. Switching from one subset to
another is done using classic gradient-based attack tools.
The empirical evidence reported on MNIST illustrates the
interest of LiPPA over state-of-the-art fast attacks.

Mots-clef : Adversarial examples, adversarial attacks,
adversarial robustness verification.

1 Introduction

Neural networks are very brittle in the sense that their
high accuracy can rapidly drop to nearly 0 when ma-
liciously crafted noises are added to the input images,
which become adversarial examples [GSS15]. This
kind of behavior of neural networks has a deterrent
effect, making the use of neural network in safety crit-
ical environments, such as in self-driving cars or in
medical imaging, a topic of controversy. Several de-
fense mechanisms have been deployed from [PMW+16]
which proved later to be inefficient when attacks get
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stronger. Complete verification methods such as Re-
luplex [KBD+17] and MIP (Mixed Integer Program-
ming) formulation of the search of adversarial exam-
ples [TXT18] seem to be the ultimate approach able
to give the exact robust test error [BIL+16]. However,
those complete verifiers can take hours on some exam-
ples without being able neither to find an adversarial
example nor to prove that there is no adversarial ex-
ample within a given neighborhood of the original ex-
ample. This leads sometimes to models for which there
is a big gap between the lower and the upper bound of
the robust test error.

To reduce the gap between those bounds, more pow-
erful attacks, able to quickly find adversarial examples
when they exist, are needed. Projected Gradient De-
scent [MMS+19], Carlini & Wagner attack [CW17] and
the randomized gradient-free attack [CH18, CRH20]
are among the strongest attacks to date but sometimes
miss adversarial examples. The fastest implementa-
tion of MIP for adversarial robustness verification is
MIPVerify [TXT18].

Our contributions

• We make the relationship between linear regions
of the input space and binary combinations of
the MIP formulation of the robustness verification
problem more obvious, for a given model, via the
introduction of a function B associating each in-
put example with a binary combination,

• we experimentally prove that the number of lin-
ear regions around the original example is smaller
than the exponential number of combinations al-
lowed by the MIP formulation,

• we propose a white-box attack that exploits, given
a model, the relationship between linear regions
and binary values used in the MIP formulation. In
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a few seconds, our method is able to find adver-
sarial examples that the MIP fails to detect given
a much longer time.

2 Related work and background

Having complete access to a trained model (white-box
setting) makes it easier to attack. This is because ev-
ery piece of information about the model that is at-
tacked can potentially be exploited to find vulnerabili-
ties, thanks to gradient-based methods. The exploita-
tion of that information also allows to accelerate the
MIP verification, which is gradient-free. We present
the related works through the point of view of informa-
tion exploitation, making the difference between meth-
ods exploiting or not the gradient information.

2.1 Related work
Gradient-based attack methods such as Fast Gradi-
ent Sign Method [GSS15], Projected Gradient Descent
[MMS+19] use accessible weights to construct adver-
sarial examples, which are good against many neural
networks, even with defense mechanisms [ACW18], so
much so that PGD is commonly seen as a strong attack,
if not the strongest First Order attack, when search-
ing for adversarial examples with `∞ distortion. How-
ever, PGD can fail: some defense mechanisms manage
to have the gradient point toward directions that are
not harmful to the neural network and thus prevent
gradient-based methods from increasing the error rate,
giving thereby a false sense of robustness [ACW18],
and when the minimal adversarial distortion is high,
PGD fails to find adversarial examples, and it is even
more patent when the allowed distortion is close to the
minimal adversarial distortion [TXT18].

The search for adversarial examples can also be done
using formal verification methods [BTT+18] that do
not use the gradient. Especially when the neural net-
works can be represented as a piecewise linear function
(when the ReLU activation is used), Satisfiability Mod-
ulo Theory (SAT) solvers can be used as in [KBD+17]
as well as Mixed Integer Programming [TXT18].

Let us focus on the MIP formulation. Assuming that
f represents a piece-wise linear function, let us say a
neural network with ReLU activation, and x an exam-
ple of the input space X = [0, 1]d, belonging to the
class y, a generic formulation of the search for adver-
sarial examples is:

min
x′

‖x− x′‖p
s.t. argmax

i=1,...,c
fi(x

′) 6= y,

x′ ∈ [0, 1]d ,

(1)

where p is usually 2 or ∞, fi represents the i−th com-
ponent of the output of the neural network and c the
number of classes. To solve this optimization problem,
the constraint argmax

i=1,...,c
fi(x

′) 6= y is linearized and each

neuron is associated with a binary value, indicating if
the neuron is active or not (Section 2.2). We generally
want to check the existence of adversarial examples in a
neighborhood of a clean example. In a restricted neigh-
borhood, computing the lower and upper bounds on
the pre-ReLU activation can show that some neurons
are always active and some others are always inactive
(whatever valid distortions are applied to the exam-
ple). Those are called stable ReLUs [TXT18] and they
do not require to be paired with a binary. Exploiting
this information gives, to the best of our knowledge,
the state-of-the-art verification method using an MIP
formulation, as it reduces the number of binary values
allowing the MIP to operate faster.

A valuable strength of the MIP is its ability to cer-
tify robustness, which is not the case for attacks. How-
ever, its main drawback is that it is time consuming,
even when we simplify the problem to computing the
robust test error [BIL+16]. It is, at least partially,
due to the fact that the MIP not only gives an up-
per bound of the minimal adversarial distortion, the
distance under which no modification can cause mis-
classification, but also gives a lower bound. And if
enough time is given to the MIP, the upper bound and
the lower bound of the minimal adversarial will con-
verge to the same value, the minimal adversarial dis-
tortion. From the MIP, some efficient attacks can be
derived by dropping the part of the MIP responsible
for computing the lower bound. It is the case of the
attacks [CH18, CRH20] which are gradient-free attacks
that explore the neighborhood of clean examples and
are able to find adversarial examples that are at min-
imal adversarial distortion distance. They do so by
exploiting the fact that ReLU networks are piecewise
affine functions [ABMM18] and solving the optimiza-
tion 1 over each of the linear regions separately. Those
regions are regions where the neural network can be
represented by an affine function. This boils down to
solving a linear program as shown in Section 2.2.

2.2 Background

Here we show the linear regions used in [CH18, CRH20]
form equivalence classes in the input space as well as
how they are related to the binary values of the MIP
formulation, and an example of MIP formulation.

For simplicity, let us consider a multilayer perceptron
with one hidden layer with e neurons, the classification
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function of that MLP can be written:

ẑ = Wx + β,
z = max(ẑ, 0),

f(x) = s = V z + α.
(2)

We linearize the ReLU constraint, z = max(ẑ, 0) us-
ing a big-M formulation [WN99] as:

zi ≥ 0, i = 1, . . . , e (3)

zi ≤Mr bi, i = 1, . . . , e (4)

zi ≤ ẑi +Mr(1− bi), i = 1, . . . , e (5)

zi ≥ ẑi, i = 1, . . . , e (6)

with Mr such that Mr ≥ maxx |ẑi|,∀i = 1, . . . , e, ∀x ∈
X and ∀i = 1, . . . , e,bi ∈ 0, 1. Those constraints are
such that for each i = 1, . . . , e:

• ẑi < 0⇒ bi = 0, and then (3) and (4) imply zi = 0,
• ẑi > 0⇒ bi = 1, and then (5) and (6) imply zi = ẑi .

The value ẑi = 0 can be associated with either 0 or
1, but in the following we will choose to associate it
with 1. Let us now write an MIP formulation:

min ‖x− x′‖p
s.t. ẑ = Wx′ + β,

zi ≥ 0, i = 1, . . . , e
zi ≤Mrbi, i = 1, . . . , e,
zi ≤ ẑi +Mr(1− bi), i = 1, . . . , e
zi ≥ ẑi, i = 1, . . . , e
s = V z + α,
st > sy.

x′ ∈ [0, 1]d,
b ∈ {0, 1}e,
z ∈ Re,
ẑ ∈ Re,
s ∈ Rc,

(7)

with big enough Mr. To simplify the formulation, the
class t is targeted using the constraint st > sy.

We derive a powerful attack that can potentially find
the same solution as the MIP, but faster since it does
not go through branching and bounding included in
MIP solvers. The idea is to look for adversarial ex-
amples over linear regions and find a mechanism to
select linear regions leading to good adversarial exam-
ples. For now, let us tackle the optimization over a
linear region by using our function B introduced be-
low.

Linear regions as equivalence classes We define
function B : [0, 1]d = X → B(X ) ⊆ {0, 1}e which
associates to each input x ∈ X , B : B(x ∈ X ) = b ∈
{0, 1}e, such that for i = 1, . . . , e:

bi =

{
1, ẑi ≥ 0,
0, otherwise.

(8)

This function B is surjective:

• for each x ∈ X , there exists a unique b ∈ B(X )
such that: B(x) = b,

• for each b ∈ B(X ), there exists at least one x such
that: b = B(x).

Then, we can define the equivalence relation:

R : R(xφ,xω) ⇐⇒ B(xφ) = B(xω). (9)

In other words, R(xφ,xω) means xφ and xω have the
same activations when going through f . It is used to
create equivalence classes:

[x] = {x′ ∈ X : B(x′) = B(x)}. (10)

And we know that the set of all equivalence classes
forms a partition of the input space X . In each
equivalence class [x], the relationship between an in-
put x′ ∈ [x] and its output f(x′ ∈ [x]) is linear,
i.e. there exist a matrix Γ and a vector γ such that:
f(x′ ∈ [x]) = Γx′+γ. Each equivalence class is a linear
region. Let us see how those equivalence classes/linear
regions and the function B can be integrated to the
MIP formulation.

MIP and B together Once we find a linear region
[xφ], we can look for adversarial examples in that re-
gion of the input space with the following optimization:

min ‖x− x′‖p
s.t. s = Γφx

′ + γφ,
x′ ∈ [xφ],
st > sy.
s ∈ Rc,

(11)

with Γφ and γφ such that f(x′ ∈ [xφ]) = Γφx
′ + γφ.

Note that the optimization problem (11) does not have
integers. Moreover, we do not have to determine the
matrix Γ and the vector γ. In practice, we solve (11)
by fixing the binary values in the MIP (7) to B([xφ])
to obtain the optimization problem LP (B(xφ), t):

min ‖x− x′‖
s.t. ẑ = Wx′ + β,

zi ≥ 0, i = 1, . . . , e
zi ≤Mrbi, i = 1, . . . , e,
zi ≤ ẑi +Mr(1− bi), i = 1, . . . , e
zi ≥ ẑi, i = 1, . . . , e
s = V z + α,
st > sy,

x′ ∈ [0, 1]d,
b = B(xφ),

z ∈ Re,
ẑ ∈ Re,
s ∈ Rc,

(12)

The optimization problems 11 and 12 are strictly equiv-
alent since fixing b to B(xφ) means that we are con-
straining the MIP to optimize only on the examples
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of the input space that have the same activations as
xφ which is by construction [xφ] = {x ∈ X : B(x) =
B(xφ)} as stated in 10. It is now obvious that there is a
relationship between the binary values of the MIP and
binary values in B(X ). And as illustrated Figure 1,
B(X ) is included in the set of all possible combination,
{0, 1}e of the naive MIP 7. In that illustration, we also
have an intuition about the fact that the real number
of linear regions around a point is far less than the
exponential number found by raising 2e.

x

(a) (b)

(c)

1

1

10

0

0

0: 000

1: 001

5: 101

2: 010

3: 011

7: 111

6: 110

linear a b c a ≤ b+ c
region

0 0 0 0 True
1 0 0 1 True
2 0 1 0 True
3 0 1 1 True
4 1 0 0 False
5 1 0 1 True
6 1 1 0 True
7 1 1 1 True

.

Figure 1: Correspondence between binary values and equiva-
lence classes. x represents a point in a 2D input space, (a), (b)
and (c) are neurons, diving the plane into active/inactive parts.
The 3-digit code abc is the binary encoding associated to each
linear region of the input space: region 3 corresponds to the lin-
ear region where the neuron (a) has negative response, and the
neuron b and c have positive responses: 3 is encoded as 011.
The linear region number 4, encoded 100, does not have any
antecedent since there can be no point in this setting verifying
that. The constraint a ≤ b + c can represent this fact, as shown
in the rightmost column of the table.

Considering the relations between linear regions, bi-
nary values given by B and the MIP formulation, a
straightforward and unsophisticated idea is to enumer-
ate the linear regions and solve a linear program over
each to find adversarial examples in a neighborhood of
a clean input. Clearly, this has a prohibitive computa-
tion time and we need an efficient method to explore
only promising linear regions.

3 Faster robustness verification

In this section, we show how some fragments of the
information given by using B have been used to speed
up the MIP and that there is still unexploited informa-
tion in 3.1. Then, in an attempt to further exploit the
available information, we introduce our attack in 3.2.

3.1 Accelerating the MIP using B
Now we show the potential acceleration that can result
from the exploitation of the information delivered by

Figure 2: Number of binary combinations that can be modeled
by the binary activations associated with a hidden layer. The
black line is the maximum number of linear regions that this
hidden layer can represent. Bottom: the same data represented
as a ration between the black line and each of the others.

the function B. We first show that the naive MIP
exploits very little information in 3.1. Then we show
how some information was integrated to the naive MIP
by [TXT18] using stable ReLUs and how the stable
ReLUs are linked to the function B in 3.1. Next, we
show that there is still unexploited information beyond
the stable ReLUs that could be harnessed to make the
MIP more efficient.

Naive MIP is information oblivious Using b ∈
{0, 1}e in eq. 7 implicitly makes the assumption that
the binary values in b are independent. As shown in
Figure 1, this assumption does not hold as there are
interactions between the different coordinates of the
binary vector b. In this simple example with only
three neurons, when b = 0 and c = 0, then the only
value that a can take is 0, fact we modeled with the
constraint a ≤ b+ c. Then the set of binary combina-
tions corresponding to linear regions is {0, 1}3\(1, 0, 0),
which makes 7: less than the cardinal of {0, 1}3, 8. The
combinatorial dimension of the MIP can be drastically
reduced if we manage to include such constraints.

The number of linear regions that can be represented
by 20 neurons with a 2 dimensional input is 211, the
ratio 211

220 ≈ 0.0002. With a two-dimensional input, the
ratio between the number of linear regions than can
be represented by 30 neurons and 230 is of the order
of 10−7, and this ratio gets smaller when the number
of neurons is bigger, as we can see on Figure 2. Using
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the view of the input space as equivalency class/linear
regions, and exploiting this information by restraining
the branch and bound to the set of reachable binary
combinations by adding some constraints, could lead
to a speed-up of several orders of magnitude and make
the problem of complete verification of neural networks
and the search of mean minimal adversarial distortion
less prohibitively time-consuming. However, it means
finding and modeling those constraints, which is out of
the scope of this paper. Fortunately, there is a simpler
way to find useful information.

Function B and stable ReLUs Let x be an original
example and Nx be the neighborhood of x in which
we are looking for adversarial examples. Let B(Nx)
be the set of all binary combinations corresponding to
the linear regions covering Nx. Having binary values
b ∈ B(Nx) instead of b ∈ {0, 1}e in eq. 7 would dras-
tically decrease the branch and bound space and be
much faster. [TXT18] already showed a correlation
between the number of stable ReLUs and the solving
time. The more stable ReLUs there are, the more the
branch and bound tree is reduced, and the less time is
spent to find the optimal solution and prove the opti-
mality by several orders of magnitude. However, even
doing so, there may remain a number of binary values
that do not correspond to any linear region of the input
space. The MIP will presumably spend time branch-
ing and bounding on binary combinations that do not
have antecedents with respect to the function B and
that will not produce any solution. The stable ReLUs
are related to the set of binary combinations that can
be obtained from the input space. The ReLUs corre-
sponding to a neuron e0 is stably equal to 0 (respec-
tively 1 ) in Nx if and only if for all b ∈ B(Nx),be0 = 0
(respectively be0 = 1). This shows that [TXT18] uses
only a part of the information in B(Nx).

Function B, beyond stable ReLUs As shown in
Figure 1, there is information contained in B(Nx) that
is not captured by stable ReLUs. That is the case for
any relationship existing between activations of neu-
rons belonging to the same layer or to different layers.
For example, in Nx, and in the one hidden layer il-
lustration given earlier, we could have two neurons i0
and i1 such that ẑi0 < ẑi1 . This relationship is such
that ẑi0 > 0 ⇒ ẑi1 > 0 it translates for the binaries
associated with them into bi0 = 1 ⇒ bi1 = 1. The
other way around, ẑi1 < 0 ⇒ ẑi0 < 0 which leads to
bi1 = 0 ⇒ bi1 = 0. Those kinds of relationships may
be hard to find if they are to be added to the MIP
formulation. There may exist more complicated rela-

tionships between the activations that may prove to be
difficult to determine a model to suit the MIP formu-
lation. As a consequence, the number of linear regions
is smaller than the theoretical exponential number of
combinations even when taking into account the num-
ber of stable ReLUs.

We used the example of a single hidden layer, but
the same reasoning can be applied to more complex
networks including convolutional networks and other
classical architectures for which MIP formulation can
be used.

3.2 Linear Program Powered Attack
We have seen in Section 2 that there are two ways of
exploiting the information when given full knowledge
of the model parameters, a gradient-based way and a
gradient-free way. Our method is going to use both
ways. We use the information contained in the weights
to see the input space as a partition such that on each
subset of that partition, for a given target class, finding
the best adversarial example is done by solving a linear
program, as shown in Algorithm 1.

Data: x, f , paramsstop, paramsgs
Result: x̂
[x̂, b] ← initialisation(x,f) [see 3.3] ;
while checkStopCriteria(x,x̂,paramsstop) [see 3.4]
do

[x̂, b] ← GSStep(x̂,f ,b,paramsgs) [see 3.2] ;
[x̂] ← LPStep(b,f) [see 3.1]

end
Algorithm 1: LiPPA

Definition 3.1 (LPStep) The exploitation step con-
sists in solving eq.12 in the current linear region.

Definition 3.2 (GSStep) The exploration step can
be achieved using various iterative gradient methods,
initialized with the solution of the LPStep. Iterations
are stopped as soon as the current point belongs to a
new linear region or after a budget limit.

Definition 3.3 (Initialisation) The initialisation is
called LiPPA0: it is an LPStep inside the clean exemple
linear region.

Definition 3.4 (Stopping criteria) There can be
various stopping criteria:

• the current distance is below the targeted ε,
• time budget,
• step number budget,
• GSStep can not find another linear region.
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Figure 3: Illustration of the behavior of LiPPA.

Our algorithm is similar to the attack of [CH18,
CRH20], but there are some differences between our
approach and theirs:

• we explicitly show that linear regions are equiva-
lency classes,

• we explicitly show the link between the linear re-
gions and the binary combinations in the MIP for-
mulation (cf Figure 1),

• they compute, for each linear region [x] the matrix
Γ and the offset γ such that f(x′ ∈ [x]) = Γx′ +
γ, while this computation is not required in our
approach,

• finally, they opted for a completely gradient-free
approach selecting linear regions using a random-
ness, when our approach is hybrid since we use the
gradient to select the linear regions.

4 Experimental results

Dataset and Models We used the MNIST dataset.
Models are from [SYZ+19] and [WK18]. Architec-
ture MLP-B is a multilayer perceptron with two 100-
neurons hidden layers, MLP-C with one 1024-neurons
hidden layer. CNN architecture has a first 16-filters
convolutional, a second 32-filters layer, of 4 × 4 pixels
each with a stride of two, then a 100-neurons hidden
layer and the output layer. Model names are prefixed
to show how they were trained: NOR for normal train-
ing with the cross-entropy loss function; ADV for ad-
versarial training with examples generated by PGD;
LPD are trained using [WK18]; MMR are trained us-
ing [CAH19]; MMR-ADV used both adversarial train-
ing with PGD and MMR. 1

1All models are available online, at https://github.

com/Hadisalman/robust-verify-benchmark for archi-
tecture MLP-B, at https://github.com/max-andr/

provable-robustness-max-linear-regions for MLP-C and

Figure 4: Evolution of the number of found linear regions
averaged over the first 100 images of the MNIST test set with
respect to the number of random samples around the original
example, using MLP-B.

Threat model We test the robustness for `∞, al-
though LiPPA could also be used for `1 and `2 without
major changes. It is worth noting that for `2 the ob-
tained optimization problem is a quadratic program.
In LiPPA steps, the neurons’ states (active or not) are
known and are directly encoded, avoiding the use of
ReLU big-M constraints. Let us denote i− the in-
dices i such that bi = 0 meaning the pre-ReLU ac-
tivations are negative and i+ the indices such that
bi = 1 meaning the pre-ReLU activations are non-
negative. The constraints ReLU constraints are then
ẑi < 0, zi = 0, i ∈ i− and ẑi ≥ 0, zi = ẑi, i ∈ i+.

4.1 Number of linear regions

Experimental setup We gave some hints allowing to
understand that the effective number of linear regions
can be much smaller than the exponential number of
possible binary combinations even when taking into ac-
count the existence of stable ReLUs. Here we run an
experiment to back that claim. First, for the origi-
nal image, we generate an increasing number of points
within a ball of infinite norm of 0.05 2. We count the
number of uniquely discovered linear regions for MLP-
B for each training setting. We average results over the
first 100 images of MNIST test set. We finally sample
6144 random points around the clean example and this
time count the number of unstable ReLUs found.

CNN.Those model can also be found at https://anonymous.

4open.science/r/fda53f2d-ee4f-40d6-a853-f9056513e82a/,
as well as our code.

2After the sampling a deformation random vector, some tricks
are applied to fill the box around the input image better and
maximize the chance of discovering more linear regions
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Training NOR ADV-0.05 ADV-0.1 LPD-0.1
nU 24.54 14.89 7.94 4.32
2nU 2.44 107 3.04 104 246 20

linear regions 541 198 49 14

Table 1: Comparison between the number of linear found and
the number of linear regions found across different training meth-
ods for the MLP-B architecture. The value next to the training
method represent the value `∞ the model was trained to be ro-
bust to.

Results Figure 4 shows that, for the same architec-
ture, the number of found linear regions is lower for
robustified models. Linking with robustness measures,
we can say that the more robust the network, the less
linear regions are found. In table 1 shows the average
number unstable ReLUs, nU , the number of all pos-
sible binary combinations to nU unstable ReLUs, and
the number of linear regions found. We can see some
substantial differences: for ADV-0.05, we have on aver-
age nearly 198 linear regions while the average number
of unstable ReLUs found is 14.89, meaning on average
there are 214.89 > 3 × 104 possible binary combina-
tions. We also observe that the number of found linear
regions is roughly 4 times less for ADV-0.01. Like-
wise, the number of linear regions found for the LPD
is 3.5 times smaller than when trained with adversarial
training for the same allowed perturbation.

Proving that the number of linear regions can be
much smaller than the exponential number of all pos-
sible combinations in a neighborhood of an image is
an encouraging first step. This step combined with a
good mechanism to select the most promising linear
regions/combinations are the heart of our approach.

4.2 LiPPA performance
Set-up details We used Basic Iterative Method
[KGB17] in the GSStep, with εBIM = 0.5/256, and
a budget stopping criterion of 50 iterations. ε repre-
sents the `∞ perturbation for which we compute the
lower bounds and upper bounds on the error rate. It
is also used to train for robustness when the model is
trained to be robust to adversarial attacks. The test
error is the misclassification rate on the clean examples
on the whole MNIST test set. The lower bound repre-
sents the best lower bound on the robust classification
error found using PGD and MIP with a time limit of
3600s when the results are from [SYZ+19], and using
PGD, the gradient-free attacks of [CH18, CRH20] and
an MIP with a time limit of 120s when from [CAH19].

Results In Table 2, note that when the lower bound is
equal to the upper bound, MIP has converged before
the timeout for each example (has found an adversarial

Network (ε)
Test
error

Lower
bound

LiPPA
Upper
bound

NOR
MLP-B (0.05)

2.05 53.37*[SYZ+19] 63.30 94.04*

NOR
MLP-C (0.1)

1.44 93[CAH19] 94.3 100

ADV
MLP-B (0.1)

3.33 16.25*[SYZ+19] 20.40 34.3*

ADV
MLP-C (0.1)

0.92 10[CAH19] 11.90 99

ADV
CNN (0.1)

0.82 3[CAH19] 4.50 100

LPD

MLP-B (0.2)
15.72 36.33*[SYZ+19] 38.3+ 36.33*

MMR
MLP-C (0.1)

2.11 22.5[CAH19] 21.30 24.9

MMR
CNN (0.1)

1.65 6[CAH19] 5.80 6

MMR-ADV
MLP-C (0.1)

2.04 14[CAH19] 13.40 14.1

MMR-ADV
CNN (0.1)

1.19 3.6[CAH19] 3.20 3.6

Table 2: Results on the first 1000 test examples. Starred
results∗: computed on the whole test set. Bold results: beat-
ing previous lower bound. Lower bounds are the best reported in
their respective papers. The upper bound are the corresponding
ones. + : The upper bound is computed on the whole test set
while only the first 1000 samples were used in our experiment.

or has proven there is none). Overwise, it means that
there are some examples around which no adversarial
example was found, but at the same time there was no
proof of robustness around those examples, the time
limit was reached by the MIP. Our attack does better
than the previously reported lower bounds on NOR-
MLP-C, ADV-MLP-C, and ADV-CNN and is not far
from the others. Even though the reported results for
NOR-MLP-B and ADV-MLP-B are on the whole test
while the results of LiPPA are only on the first 1000
samples, it seems that LiPPA outperforms the attacks
used to compute that lower bound and the MIP which
were given an hour.

Observation of runtime The average running time
of LiPPA compares favorably to MIP but can not com-
pete with gradient methods running on GPU. However,
we observed an interesting behavior (see Table 3): if
LiPPA is successful and finds an adversarial example,
it finds it really fast. If LiPPA runs more than a few
seconds, it is a good prediction that it will fail. Know-
ing this, the time budget seems a good strategy for the
stopping criterion.

5 Discussion and conclusions

We propose a new attack, LiPPA, that alternates ex-
ploitation and exploration steps. In the exploration
step, LiPPA takes advantage of gradient-based infor-
mation by following the gradient, not to find adversar-
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Model Failed (in sec) Successful (in sec)
ADV-CNN 31.10 0.64
MMR-CNN 36.93 2.45

MMR-ADV-CNN 29.87 0.45
NOR-MLP-B 15.90 0.42
ADV-MLP-B 16.52 0.25
NOR-MLP-B 16.24 0.25

Table 3: Average runtime for failed and successful LiPPA
search.

ial examples but to explore another promising linear
region that could lead to a better adversarial example.
And during the exploitation step, LiPPA benefits from
gradient-free information by solving a linear program
in the linear region proposed by the exploration step.

Doing that, LiPPA is able to achieve better lower
bounds on the robust test error getting ahead of pre-
vious methods including MIP with time limits going
up to one hour, as well as PGD, establishing itself as
a new state-of-the-art attack. We show that the in-
put space of neural networks with piecewise linear ac-
tivation, among them, the ReLU, can be partitioned
into equivalence classes and that the state-of-the-art
MIP verifier uses a part of the information contained
in that partitioning to be faster than concurrent work.
We show that there is still unexploited information in
the verification with respect to the linear regions of the
input space.

Future work includes finding better ways to propose
linear regions in which to look for adversarial exam-
ples as well as looking for a way to discover constraints
to add to the MIP formulation to focus only on the
binary values corresponding the linear regions of the
input space to accelerate the robustness verification.
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