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Abstract

Background: With the rapid advancement of ge-
nomic sequencing techniques, massive production
of gene expression data is becoming possible, which
prompts the development of precision medicine.
Deep learning is a promising approach for pheno-
type prediction (clinical diagnosis, prognosis, and
drug response) based on gene expression profile.
Existing deep learning models are usually consid-
ered as black-boxes that provide accurate predic-
tions but are not interpretable. However, accuracy
and interpretation are both essential for precision
medicine. In addition, most models do not inte-
grate the knowledge of the domain. Hence, making
deep learning models interpretable for medical ap-
plications using prior biological knowledge is the
main focus of this paper.
Results: In this paper, we propose a new self-
explainable deep learning model, called Deep
GONet, integrating the Gene Ontology into the hi-
erarchical architecture of the neural network. This
model is based on a fully-connected architecture
constrained by the Gene Ontology annotations,
such that each neuron represents a biological func-
tion. The experiments on cancer diagnosis datasets
demonstrate that Deep GONet is both easily in-
terpretable and highly performant to discriminate
cancer and non-cancer samples.
Conclusions: Our model provides an explanation
to its predictions by identifying the most impor-
tant neurons and associating them with biological
functions, making the model understandable for
biologists and physicians.
Keywords: Gene expression; Phenotype predic-

tion; Model interpretation; Deep learning; Gene
ontology

Background

With the rapid advances of data acquisition tech-
nologies, collecting large amounts of different-type
data (images, ECG, genomics. . . ) becomes simpler
in the medical field. It inspires a new form of this
field, i.e., precision medicine, which takes advan-
tage of these available data to improve profoundly
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diagnosis, prognosis, or therapeutic decision. Pre-
cision medicine has access to detect in advance a
disease, such as cancer, anticipate the progression
of the disease, and adapt the therapy according to
the characteristics of patients. Among these data,
genomic data and especially gene expression data
play a key role in the development of precision
medicine. Gene expression profile is known to be
an indicator of the cellular state and allows the
study of complex diseases.

For many years, machine learning has been used
on transcriptomic data to construct classifiers pre-
dicting phenotypes (diagnosis, prognosis, treat-
ment) (1). In the last decade, deep learning has
become the source of the most impressive improve-
ments in machine learning (2). It shows its superi-
ority in many domains such as image analysis or
natural language processing. Its main advantage is
that it constructs high levels of data abstraction by
stacking multiple linear and non-linear processing
units. Deep learning has recently been applied
to classification based on gene expression prob-
lems. Unlike images or texts, gene expression data
have no structure. The architectures used in the
literature are, therefore, mainly autoencoders and
multilayer perceptrons (MLP) (3). For instance,
Stacked Denoising Autoencoders (4; 5) are exploited
to extract a lower dimension from the data, then a
classifier (such as support vector machine (SVM) or
MLP) is applied to perform classification. MLP are
used in (6; 7) to predict directly diseases without
dimension reduction. Despite promising first re-
sults, deep learning has not made a breakthrough
in gene expression classification yet because of the
often small size of the available training sets. Deep
learning is especially good with large training sets.
In the next years, with the increasing production
of transcriptomic data, it is highly likely that deep
learning will play a major role to solve these prob-
lems.

One of the main concerns of the application of
deep learning in the medical field is its lack of
interpretability. Indeed, the neural networks are
black-box models, which means that the model
cannot provide an explanation to its decision. The
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interpretation of machine learning algorithms is
one of the most essential topics nowadays, espe-
cially in the case of medical application for three
main reasons. First, both the physician and his
patient must understand why the model predicts
a given phenotype. Particularly, it can influence
later decisions such as the choice of the treatment.
Second, it is important to ensure that the model
bases its predictions on a reliable representation
of the data and does not focus on irrelevant ar-
tifacts. This will highly impact the trust of the
physicians toward the predictions regardless of
the performances of the model. Finally, the model
with high-accurate predictions may have identified
interesting patterns that biologists would like to
investigate.

We can distinguish two main approaches for in-
terpreting the black-boxes: the post-hoc methods
and the self-explainable models (8). In a post-hoc
method, the black-box model is first learned and
then an interpretation method is used to explain
the predictions. Several post-hoc methods with
different purposes are proposed in the literature.
Among them, proxy methods, which approximate
a black-box model by an interpretable model, can
help interpret the general behavior of the model.
For example, Ribeiro et al. (9) propose a linear
proxy method, Local Interpretable Model-Agnostic
Explanations (LIME), to approximate any black-box
model. Interpretation methods specific to deep
learning have been recently proposed, namely
gradient-based methods (10). The model predic-
tion is explained by backpropagating the signal
from the output to the input. This type of method
enables the identification of the most relevant fea-
tures and neurons involved in the decision making.
Several gradient-based methods are proposed in
the literature including Layerwise Relevance Prop-
agation (LRP) (11; 12), Integrated Gradients (13),
and DeepLift (14). In (15), the authors show that
among these methods, DeepLift and LRP are bet-
ter aligned with human intuition since they satisfy
some desirable properties. The self-explainable
models are inherently interpretable models. By
definition, they include the decision trees, rules
systems, sparse linear models. However, these
three models generally do not perform well on
high-dimensional complex data. Few works on
self-explainability have been proposed for deep
learning. Melis and Jaakkola (16) introduce a built-
in interpretable model, Self-Explainable Neural Net-
work, that behaves locally as a linear model.

A general opinion is that the black-boxes are
more accurate than the self-explainable models.

The capacity of interpretability is often viewed as
a constraint of the model that decreases its perfor-
mance. There would be a trade-off between per-
formance and interpretability. However, recently
a part of the machine learning community claims
that performance and interpretability are not ex-
clusive. Rudin (17) explains why black-box mod-
els should be avoided for crucial decisions, like in
medical applications, even with the use of post-hoc
interpretation. For example, the proxy methods
create a new model that approximates the deci-
sion process of black-box models, leading to an
imperfect fidelity in explanation. In addition, dif-
ferent explanations can be obtained for the same
prediction using different interpretation methods
or the same interpretation method with different
parameters (18; 19). Rudin, therefore, promotes
the development of high-accurate self-explainable
models. Self-explainable deep learning model is
one of the solutions.

All of these methods, post-hoc and self-
explainable, consider that the interpretation of a
model consists of the identification of the inputs
and the part of the model, in case of deep learning
the set of neurons, that support the predictions. In
the context of phenotype prediction from gene ex-
pression, these methods generally do not provide
an understandable explanation. The explanation
must be completed with knowledge of the domain.
For example, we have to explain which biological
functions are represented in the model and which
ones are used to compute the patient outcomes.

Few works have been published on the construc-
tion of self-explainable neural networks based on
gene expression data using prior biological knowl-
edge. Prior knowledge comes from the ontologies
such as Gene Ontology (GO) (20), Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (21), Reac-
tome (22), or Search Tool for the Retrieval of In-
teracting Genes/Proteins (STRING) (23). Among
them, the closest literature to our work (24) in-
corporates GO into a neural network, called Gene
Ontology Neural Network (GONN). They replace
one hidden layer by one level of the GO subon-
tologies and connect the input features by par-
tial connections according to the annotations with
the ontologies. In this way, some input features
cannot be included if there are not connected to
the ontologies. Similarly, Gene–Pathway–Disease
(GPD) (25), Pathway-Associated Sparse Deep Neu-
ral Network (PASNet) (26), and Gene Regula-
tory network-based Regularized Artificial Neural Net-
work (GRRANN) (27) integrate respectively bi-
ological pathways and regulators from protein-
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protein/protein–gene interactions in the first layer.
These architectures contain at most two hidden
layers. For example, PASNet tries to capture non-
linear interactions between pathways in a second
hidden layer. However, deep neural networks al-
low deeper representations of hierarchical relations
between gene expression and biological objects. By
using prior knowledge, these works first attempt
to boost the model performances on their target
tasks. Yet, they do not clearly show whether the
neurons correspond to the associated biological
concept or not. Integrating knowledge may not be
so beneficial for learning.

In this paper, we propose a self-explainable
deep fully-connected neural network, called Deep
GONet, based on gene expression data. This model
is constrained by prior biological knowledge from
GO, which is widely used in the bioinformatics
community. The architecture represents different
levels of the ontology preserving the hierarchi-
cal relationships between the GO terms by using
sparse regularization. Our objective is to build
an accurate and relevant interpretable model for
cancer detection. Each neuron is associated with a
GO function and the links between these functions
are represented by the network connections. A pre-
diction of the network can, therefore, be directly
explained by the set of biological functions.

The paper is organized as follows. We first de-
scribe the proposed novel model, Deep GONet,
for biological interpretation. Then, the model is
evaluated on two public datasets and compared
with other approaches. We also provide how to
obtain the explanations of outcomes and their bio-
logical significations at three levels (disease, sub-
disease, and patient). The conclusions to this paper
and some future research directions are finally pre-
sented.

Methods

We propose a new neural network model, Deep
GONet, that is self-explainable and embeds the
biological knowledge contained in GO. Our model
is based on a MLP constrained by the GO structure.
The constraints are introduced into the network
using an adaptive regularization term.

The architecture of Deep GONet

Our model takes in the input layer the gene expres-
sion profile of a patient and returns in the output
layer the prediction of a phenotype of this patient.
The architecture of the hidden layers represents the

structure of GO. GO gathers three ontologies that
respectively describe the following categories: bio-
logical process (GO-BP), molecular function (GO-
MF), and cellular component (GO-CC). We chose
to base the architecture of the hidden layers on the
GO-BP since it provides larger processes implied
by the activity of the genes, which can be more
useful for phenotype prediction. However, it is
possible to implement the GO-MF or GO-CC in
the network architecture with the same method.

GO-BP is structured as a directed acyclic graph
(DAG) containing 11991 nodes (version of Octo-
ber 2019) annotated with the input layer and dis-
tributed over 19 levels as illustrated in the top of
Fig. 1. Each node is a GO term representing a
biological function. Two GO terms are linked if
their biological functions are related and the ma-
jority of these relations are "is a" relations. The
GO terms are connected respecting a hierarchical
bottom-up orientation. A GO term is assigned
to a dedicated level according to its longest path
to the root (i.e., GO:0008150). The GO terms in
lower levels correspond to more specific functions,
like positive regulation of skeletal (GO:0014810 at the
19th level), whereas the nodes in upper levels are
more general functions such as the root function
GO:0008150. The GO terms are also linked to genes
via GO annotations. A parent GO term (i.e., desti-
nation of incoming connections) inherits, therefore,
the set of genes from its children (i.e., origins of
incoming connections).

Our neural network architecture represents the
GO-BP, i.e., each hidden layer l represents a GO
level h, each neuron a GO term, and each input
variable a gene. Since the lowest levels of GO con-
tain few very specific terms and the highest levels
are very general, it seems not useful to implement
the whole GO in our architecture. The selection of
the levels is, therefore, part of the hyperparameters
of the model to determine. In our experiments, the
level 7 to level 2 have been selected as illustrated
by the green box in the Fig. 1.

Our model is based on a fully-connected MLP
that consists of an input layer, L hidden layers, and
an output layer for phenotype prediction. The in-
put layer is composed of genes or gene products
(e.g., probes). A probe is a short DNA sequence
targeting a region of one or several genes. It is the
measure used in microarray data. Each neuron is
connected to all neurons of the previous layer and
all neurons of the next layer. Each hidden layer
corresponds to a level in GO-BP and its neurons
match all the GO terms of the target level. Note
that the incorporation of the knowledge must re-
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Figure 1: A subset of GO-BP (top) and the corresponding Deep GONet architecture (down). The green box represents the
GO levels implemented in Deep GONet. The red and black dashed arrows represent respectively the GO and noGO
connections.
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spect the goal of the neural network to construct
an abstract representation of the data through its
hierarchical architecture. The first hidden layer of
a neural network extracts the low-level features
from the input layer, it corresponds to the lowest
selected level of GO containing more specific bi-
ological functions. In the last hidden layers, the
high-level features represent the most general bi-
ological functions of the highest GO levels. The
bottom of the Fig. 1 illustrates where the levels 7
to 2 of GO are implemented in the architecture
of the neural network. The activation of the i-
th neuron of the hidden layer l can be expressed

as: a(l)i = f
(

∑
Nl−1
j=1 a(l−1)

j w(l)
ji + b(l)i

)
= f

(
z(l)i

)
,

where w(l)
ji is the weight of the connection from the

j-th neuron of the layer l − 1 to the i-th neuron of
the layer l, b(l)i is the bias of the i-th neuron of the
layer l, Nl−1 the number of neurons in the layer
l − 1 , z(l)i is the sum of signals received from the
previous layer l − 1, and f is the rectified linear
unit function (ReLU) defined as f (x) = max(0, x).
The output layer finally estimates the probability to
belong to each class. For binary problem, the out-
put layer contains only one neuron with a sigmoid
function, given by a(L) = 1

1−exp(z(L))
, returning the

probability to predict the positive class. Note that
for multiclass problem, the output layer should
contain one neuron for each class k with a softmax

function, defined as a(L)
k =

exp(z(L)
k )

∑K
j=1 exp(z(L)

j )
where K

represents the number of classes, to get a probabil-
ity of belonging to each class.

In our fully-connected architecture, we identify
two types of connections :

• connections corresponding to links in GO-BP
(colored in red in Fig. 1), called GO connec-
tions;

• connections between two nodes that are not
linked in GO-BP (marked by dashed arrows
in Fig. 1), called noGO connections.

A probe in the input layer in Fig. 1 is connected
to the neurons of the first hidden layer via a GO
connection if it is associated with the correspond-
ing GO term in the lowest chosen level of GO-BP
(i.e., level 7 in Fig. 1), or via a noGO connection oth-
erwise. Note that the neurons of the next hidden
layers (i.e., 2 to 6 in Fig. 1) are not directly con-
nected to the probes. These neurons can be indi-
rectly connected to their probes by the propagation
of gene expression through the GO connections of
the previous layers. If we want to represent exactly

the GO-BP, we can cut all noGO connections and
keep only the GO connections in our architecture.
However, GO only represents the current knowl-
edge we have on biology. The ontologies change
continuously with the outcoming of new scientific
discoveries. Some links can be missing or wrong,
and many genes are not associated with their right
corresponding GO term. 33% of the probes from
the microarray HG-U133Plus2 used in our experi-
ments have no GO annotations (such as the probe
231952_at in Fig. 1). This means that these probes
would not be connected to the neural network if we
use only the GO connections. They would not be
used to compute the prediction even if they bring
relevant information. This situation could impact
negatively the accuracy of the neural network. To
deal with the errors and the incompleteness of the
knowledge represented in GO, we keep all con-
nections in our architecture (both GO and noGO
connections). However, the noGO connections are
penalized to favor the use of GO connections to
compute the predictions.

Learning and regularization of the net-
work

The model is constrained by a customized regu-
larization term, named LGO, to favor the GO con-
nections and penalize the noGO connections. This
regularization term is defined as follows:

LGO =
L

∑
l=1
‖W(l) ⊗ (1− C(l))‖2

2 (1)

where L is the number of hidden layers of the
neural network, W(l) is the weight matrix of the
layer l, and ⊗ is the pointwise product. C(l) is
the adjacency matrix that encodes the connections
between the GO terms of the layer l − 1 and l (i.e.,
the corresponding levels h + 1 and h in GO-BP).
More precisely, if a GO term i at the corresponding
level h in GO-BP is a parent of GO term j from
the level h + 1, then c(l)j,i = 1 else c(l)j,i = 0. For the

output layer, C(L) is a matrix of ones. The loss of
our model is the sum of the common cross-entropy
loss and our regularization term:

L =
N

∑
i=1

K

∑
k=1

(−yi,k log ŷi,k) + αLGO (2)

where N and K are respectively the number of sam-
ples in the training set and the number of classes.
yi,k is the indicator of the true class, i.e., yi,k = 1
when the i-th sample belongs to the class k, or 0
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Cancer type BRCA HNSC KIRC LGG LIHC LUAD LUSC OV PRAD THCA UCEC
#patients 1102 500 538 511 371 533 502 374 498 502 551
Frequency 17.05% 7.74% 8.32% 7.91% 5.74% 8.25% 7.77% 5.79% 7.71% 7.77% 8.53%

Table 1: Number of samples by cancer types in the TCGA dataset.

otherwise. Note that each sample only belongs
to one class. ŷi,k is the probability that the i-th
sample belongs to the class k computed by the
neural network. During the inference phase, we
select the class with the highest probability to get
the final prediction. Finally, α is a hyperparameter
that weights the regularization term. With α close
to 0, the regularization term vanishes, our model
becomes a classical MLP without interpretation
capacity. With a high value of α, the learning al-
gorithm focuses on the regularization term and
ignores the cross-entropy. The resulting neural net-
work represents perfectly the GO connections by
cutting the noGO connections, but it has a weak
prediction capacity. α is a crucial hyperparameter
that controls the trade-off between the minimiza-
tion of the cross-entropy and the loss LGO.

Results

Dataset

We validate our model on two datasets. The
first one comes from a cross-experimental study
compiling microarray data of over 40.000 pub-
licity available Affymetrix HG-U133Plus2 chip
arrays (28). These arrays were produced under
different experimental protocols and concerned
seventeen types of tissue. The dataset contains
54675 probes for 22309 samples whose 14749
(66.11%) are cancer and 7560 (33.89%) are non-
cancer. We standardize it to a mean of zero and
a standard deviation of one, and split it into a
training set of 17847 examples (11799 cancer, 6048
non-cancer) and a test set of 4462 examples (2950
cancer, 1512 non-cancer). Note that the original
proportions of cancer and non-cancer samples are
preserved in each set. The training set is used to
train predictive models and the test set to evaluate
their performances.

The second dataset is RNA-Seq data from The
Cancer Genome Atlas (TCGA) combining 5982
samples of 11 cancer types and 482 normal sam-
ples from different tissues. Table 1 lists the number
of cancer samples by cancer type. The number of
input features is 56602. Before standardization, the
data have been pre-normalized with FPKM (frag-

ments per kilobase per million mapped reads) and
transformed using log2. 80% of the dataset goes
into a training set and the remaining 20% into the
test set.

Performances and sensitivity analysis

In this first experiment, we compare the perfor-
mances of Deep GONet on cancer prediction from
gene expression profile with the state-of-the-art.
Binary classification is evaluated on the microarray
dataset with a sigmoid function in the output layer
whereas multiclass classification is performed on
the RNA-Seq data with a softmax.

Deep GONet model is learned from the train-
ing set using a standard learning procedure. The
number of layers and nodes are determined by the
levels chosen in GO-BP. Different levels of GO-BP
have been tested. For both datasets, we fix the
architecture with levels 7 to 2 of GO-BP since it
gives us the best performance. We test different
values of the training hyperparameters and select
the following settings. The weights and biases
are initialized with He initializer. On the microar-
ray dataset, dropout layers with a ratio of 0.6 are
added after each hidden layer to reduce overfit-
ting. The network parameters are optimized using
adam with an adaptive learning rate of 0.001. On
the RNA-Seq dataset, we choose the stochastic gra-
dient descent with a momentum equal to 0.9. The
number of epochs of the training is set up to 600.
Different values of the hyperparameter α, control-
ling the regularization term LGO, are tested in the
interval [0, 101]. The accuracy of the model is esti-
mated from the test set according to the value of
α to investigate the impact of this hyperparameter
on the performance of the model. To reduce the
variability of the results coming from the random
initialization of the model parameters, 10 models
for each value of α are learned with different ran-
dom seeds for the initialization of the parameters.

Our method is compared with classical fully-
connected networks using L2 or L1 regularization
terms. These regularization terms apply a penalty
on all the connections regardless of the type (GO or
noGO). L2 is the squared magnitude of the weights
L2 = ∑L

l=1 ‖W(l)‖2
2, and L1 is the absolute value

of the magnitude of the weights L1 = ∑L
l=1 |W(l)|.
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These regularization terms are also controlled by a
hyperparameter α. In addition, a model without
any regularization is tested for comparison at α =
0. Note that all these models use the same baseline
described in Fig. 1. They are trained and tested
with the same procedure used for Deep GONet.
The accuracy of each model is estimated from the
test set. All the experiments have been executed
on a GPU RTX 2080Ti using Tensorflow 1.12.

In what follows, the results on the microarray
dataset (Fig. 2a to 2c) are commented, but similar
results are observed on the TCGA dataset (Fig. 2d
to 2f).

Fig. 2a (resp. Fig. 2d) plots the average and
the standard deviation of the accuracy of a model
with a L1, L2, and LGO penalty according to α.
The three curves begin at the same point since
α = 0 corresponds to a model without regulariza-
tion. We can see that the model without regular-
ization and the one with LGO and L2 at α = 10−5

achieve the best accuracy (0.945). Note that LGO
and L2 outperform L1. We also test classical ma-
chine learning methods with scikit-learn python
package: Random Forest (Gini criterion, number
of trees=100), SVM (linear kernel, C=1.0), XGboost
(number of trees=100, learning rate=0.1), and MLP
(three layers with respectively 1000, 500 and 200
nodes). Metrics performance for each method are
detailed in Table 2 (resp. Table 3 for TCGA). Simi-
lar performances are obtained. These results show
that our method obtains the same accuracy with
the state-of-the-art algorithms, which are not self-
explainable. For all models, the average accuracy
decreases for high value of α. The accuracy drops
to 0.66 which corresponds to the proportion of the
majority class, meaning that the models learn noth-
ing and associate all examples to the cancer class.
In this case, the regularization term takes too much
importance relative to the cross-entropy. We note
some special points, at α = 10−1 (for LGO and L2)
and at α = 10−3 (for L1), with high variability. At
these values of α, some models fail to learn with
an accuracy of 0.66, whereas others succeed by
reaching an accuracy around 0.9. That’s why the
average is between these two extremes.

In the following, we analyze the behavior of
GO and noGO connections in Deep GONet and
standard MLP. Fig. 2b (resp. Fig. 2e) displays the
ratio between the absolute-value norms of the GO
(Eq. (3)) and noGO (Eq.(4)) connections, defined
respectively as:

1
L

1
#GO

L

∑
i=1
|W(l) ⊗ (C(l))|, (3)

1
L

1
#noGO

L

∑
i=1
|W(l) ⊗ (1− C(l))|. (4)

For L2 and L1, the ratio is stuck to 1 whatever the
value of α. As expected, no distinction is made
between the two types of connections. On the
opposite, the ratio of the model with LGO regular-
ization increases along with the growth of α and
finally reaches its highest value of 104. For this
model, Fig. 2c (resp. Fig. 2f) shows the average of
the absolute-value norms of the GO (Eq. (3)) and
noGO (Eq.(4)) connections. Note that the green
line in Fig. 2b (resp. Fig. 2e) is obtained from
the division of the red line by the green line from
Fig. 2c (resp. Fig. 2f). We can observe that the aver-
age norm of the GO connections remains between
10−2 and 10−1. In contrast, the average norm of
noGO connections decreases with α, following the
accuracy trend. With α = 0 and α = 10−5, the
average norm of the noGO connections is very
close to the one of the GO connections. The ratio
between the two norms, illustrated in Fig. 2b, is
below 101. From 10−4 to 101, the gap between the
two norms becomes larger. The norm of noGO
connections is converging almost to 0, leading to
a ratio of 101 at α = 10−4 and the highest ratio
of 104 at α = 101. As a consequence, LGO seems
to penalize well the noGO connections with high
value of α. At α = 101, the model is equivalent to a
model containing only GO connections, all noGO
connections are set to 0, respecting the hierarchy
of GO scrupulously. However, the accuracy curves
in Fig. 2a show that with a large value of α, the
model is not able to learn anymore. It means that
some noGO connections are necessary for accurate
predictions. In particular, the flexibility brought
by the fully-connected architecture makes it pos-
sible. This advantage will be further inspected in
the next sections.

In summary, imposing a number of layers and
neurons is not enough to make the model in-
terpretable. An appropriate regularization term
should be added to the loss function to constrain
it along with biological knowledge. If the regular-
ization term is not customized, the GO and noGO
connections will be considered identically like with
a L2 or L1 regularization. This results in a non-
interpretable model without any prior knowledge.
Our model Deep GONet reaches similar prediction
performances than the state-of-the-art, in both (i)
penalizing properly the noGO connections, and (ii)
privileging enough the GO connections to let the
major information flow by them.

On the microarray dataset, the models at α =
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Figure 2: Results on the microarray dataset (left column) and the TCGA dataset (right column). a-d Accuracy of the models
according to α. b-e Ratio between GO and noGO connections weights according to α. c-f Absolute-value norms of
the GO and noGO connections from LGO models according to α.
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Model Accuracy Precision Recall F1-Score MCC AUC
RF 0.904 0.932 0.921 0.927 0.786 0.895
SVM 0.948 0.964 0.957 0.961 0.885 0.944
XGBoost 0.936 0.954 0.948 0.951 0.857 0.930
MLP 0.951 0.974 0.952 0.963 0.893 0.986
Deep GONet 0.925 0.943 0.943 0.943 0.832 0.916

Table 2: Comparison of the performances of the models on the microarray dataset.

Model Accuracy Precision Recall F1-Score MCC AUC
RF 0.968 0.967 0.965 0.966 0.964 0.999
SVM 0.977 0.977 0.975 0.976 0.974 1.000
XGBoost 0.974 0.972 0.972 0.972 0.971 1.000
MLP 0.962 0.961 0.960 0.960 0.958 0.998
Deep GONet 0.970 0.970 0.967 0.968 0.967 0.998

Table 3: Comparison of the performances of the models on the RNA-Seq dataset.

Layer Input 1 2 3 4 5 6 Output Total
Level GO-
BP

– 7 6 5 4 3 2 – 6

#neurons 54675 1574 1386 951 515 255 90 1 4772
#connections – 86M 2.2M 1.3M 490K 131K 23K 90 90.1M
#GO con-
nections

– 43504 1709 1585 1010 491 175 – 48K

Table 4: Details about the architecture of Deep GONet.

10−2 achieve an average accuracy around 0.92 and
an average ratio of 103. Since they represent a good
trade-off between noGO connections penalization
and accuracy, we analyze in-depth and interpret
biologically one of the models learned with α =
10−2 in the rest of this paper. The study will focus
on the microarray dataset, but similar analyses can
be conducted on the other dataset.

Analysis of the Deep GONet architecture

The first part of this analysis is to check that the
architecture of the model chosen in the previous
section is very close to the subhierarchy of GO-
BP. This model has been learned with α = 10−2

and reaches an accuracy of 0.925 (reported in Ta-
ble 2) as well as a ratio between GO and noGO
connections around 103. Table 4 presents in detail
its architecture. The first two rows summarize the
corresponding levels from GO-BP and the num-
ber of neurons from the input layer to the output
one (see Fig. 1). The last two rows give for each
layer the number of incoming connections (GO and
noGO) and the number of incoming GO connec-
tions. Note that the total number of connections
plus the number of neurons constitute the number
of parameters of the model (i.e., around 90.105M).
The number of connections decreases through the
layers because the number of neurons by layer be-
comes smaller. This table shows that the large

majority of the connections are noGO connections,
only 0.05% are GO connections (i.e., around 48K).

Fig. 3 displays for each layer the sorting of the
incoming connections according to the absolute
value of their weight. The incoming GO (resp.
noGO) connections are colored in red (resp. green).
We first note that the connection matrices are very
sparse, few connections have their weight signifi-
cantly different from 0. This means that the gene
expression is not uniformly propagated through
the entire network and only a small part of the
network is useful for the prediction. For all hid-
den layers, most of the GO connections are ranked
before the noGO connections. Some of the GO con-
nections can have a very high weight (around 100).
The high-weighted incoming GO connections of a
neuron promote the activation of its corresponding
function. The value of the noGO connections is
close to 0 as expected by the application of the
LGO penalization. Some GO connections are or-
dered at the bottom of the rank. For example,
the 43 505th GO connection of the first layer is
ranked 33 041 190th. The GO connections, which
do not seem to be useful for the network, get a very
low value (7.10−6 for our example). On the oppo-
site, despite the application of the LGO penalty on
noGO connections, few of them have higher weight
than GO connections as illustrated in the figure of
the second hidden layer. These results show that
the architecture of our model is very close to the
GO-BP architecture since most of the weights of
noGO connections are set to 0. The rare noGO
connections with high weight are interesting. It
represents links that the network has to build to
compute accurate predictions. It would be interest-
ing to investigate which GO terms or probes that
have been connected by these noGO connections.

The next analyses of our network will be based
on two sets of values: the neurons activation and
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Figure 3: Sorting of incoming connections from each layer according to their absolute weight value.
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neurons relevance. The activation a(l)i of a neu-
ron i from layer l gives information about how
much signal z(l)i flows from this neuron. However,
high activation doesn’t necessarily mean that the
neuron contributes highly to the prediction. A
neuron highly activated by a given sample may
have outcoming connections with very low weight.
In this case, it will contribute a few to the predic-
tion. Therefore, to identify which neurons and
connections are used to compute the predictions,
we employ a gradient-based method, Layerwise Rel-
evance Propagation (LRP) (11; 12). The aim of LRP is
to retropropagate the output signal of one sample
from the upper hidden layer to the input layer. A
relevance score assigned to a neuron i of a layer l
is given by

R(l)
i =

Nl+1

∑
j=0

a(l)i wi,j

∑k a(l)k wk,j + ε
R(l+1)

j (5)

where ε is a factor of stabilization (equals to 10−7 in
our experiments), R(l+1)

j is the relevance of a neu-

ron j of the upper layer l + 1, and R(L) = z(L). This
score represents the proportion of the output sig-
nal passing through the neuron and its outcoming
connections. The relevance of a neuron represents
its importance in the computation of the predic-
tion. For each patient, we can get a relevance (resp.
activation) profile by layer composed of neurons
relevance (resp. activation). An analysis of the
neurons relevance of each layer confirms the fact
that only a small subset of neurons is important to
compute a given prediction.

Biological significance of the neurons

In this section, we check that the neurons of our
network actually represent their corresponding GO
term, i.e., the activation of a given neuron repre-
sents the expression of the corresponding biologi-
cal function. For that, we use the fact that each GO
term in GO is associated with a set of probes. If a
given neuron really represents its corresponding
GO term, the set of probes associated with this
GO term should activate the neuron more than
any other set of probes. We propose a procedure
illustrated in Fig. 4 based on this principle to test
the biological significance of the neurons and eval-
uate the relationship with the importance of the
neurons by using LRP with the package innves-
tigate (29). We detail in the following only the
analysis of the first hidden layer. However, we can
apply similar analyses to the other layers.

The first hidden layer contains 1574 neurons
connected to the input layer. Each GO term is
connected to a set of probes (median: 8, max: 1357,
min: 1). Regarding this information, the target
mask of a neuron is defined as follows:

• all the probes of the input layer, which are not
connected to the GO term, are set to be 0;

• the values of the remaining probes in the set
are unchanged.

In total, we have 1574 masks because none of the
neurons has the same target mask. For every neu-
ron, all these masks are applied to the input layer
to identify whether the neuron is activated more
by its target mask than the other masks. This can
be measured by the rank of the target mask. The
following procedure, illustrated in the top of Fig. 4,
details how to get the rank of the target mask for
each neuron in a layer l:

• Step 1: For each sample x from the full test
set, the activation a(l)i,p(x) of each neuron i

for a given mask m(l)
p is calculated where

p = 1, . . . , i, . . . , Nl . As a neuron and its target
mask share the same index, the activation of a
neuron i for its target mask is a(l)i,i . Note that
there is no bias due to the length of the mask.

• Step 2: Then, the average value of these ac-
tivations ā(l)i,p is considered. For example, as-
suming that there are 3 neurons (3 masks) in
the first hidden layer, for neuron 1, we obtain
ā(1)1,1 = 0.9, ā(1)1,2 = 0.7, and ā(1)1,3 = 0.8.

• Step 3: For each neuron, its activation values
of all the masks are ordered in a decreasing
way. Then, we have the rank ā(1)1,1 , ā(1)1,3 , ā(1)1,2 . It
means that the neuron 1 embodies the cor-
responding GO term because the rank of its
target mask is 1.

We compare the rank of the target mask of the
neurons with the rank of the neurons according
to their LRP relevance. The computation of this
rank, described in the bottom of the Fig. 4, follows
the steps 1 to 3 without considering the masks.
For each sample x and all the neurons i in a layer
l, R(l)

i (x) is computed, then the average across

the samples R̄(l)
i is calculated. For example, we

acquire R̄(1)
1 = 1.9, R̄(1)

2 = 2.5, and R̄(1)
3 = 0.3

respectively for the neurons 1, 2, and 3. According
to Step 3, the relevance scores are ordered in the
following sequence R̄(1)

2 , R̄(1)
1 , R̄(1)

3 . Then, based on
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Figure 4: Illustration of the procedure to evaluate the biological significance of neurons from the first layer. The upper part
shows how to calculate the rank of the target mask of each neuron. The lower part shows how to compute the rank
of the neurons according to their LRP relevance. The relationship between these two metrics is evaluated through a
final figure (e.g., Fig. 5).

Figure 5: Sorting of neurons from the first hidden layer ac-
cording to the rank of their target mask (y-axis)
and their LRP rank (x-axis).

this sequence, a rank to each neuron is attributed:
neuron 2 gets the rank 1, and so on. Fig. 5 plots
the rank of the target masks of the neurons along
y-axis and the rank of the neurons according to
their LRP relevance along x-axis. Note that the
value of the ranks is up to the total number of
neurons (i.e., 1574).

For the y-axis, a rank can get a NULL value or a
discrete value in the range [1,16]. On the one hand,

a NULL rank means that the activation of a neuron
for its target mask is zero, which concerns 603 neu-
rons (i.e., 38.31% of the 1574 neurons). Specifically,
in total 591 neurons have a zero activation value
for any mask and generally a LRP rank above the
1000-th order (colored in orange in Fig. 5). The
rest 12 neurons are activated by at least one an-
other mask, and their LRP rank is below 1000-th
order (colored in green in Fig. 5). On the other
hand, there exist 971 neurons (61.69%) that have a
positive activation for their target mask and show
higher ranks, below order 1000. Among the 971
neurons, the target masks of 850 neurons rank 1,
the other 121 neurons rank between 2 and 16. In
conclusion, most of the neurons, which contribute
highly to the prediction (LRP rank below order
1000), are well ranked for their target mask. This
means that the important neurons for the predic-
tion mainly match with their corresponding GO
term.

Concerning the neurons with a NULL rank for
their target mask, the major part has low LRP rel-
evance. These neurons are not important for the
predictions, they will not be, therefore, used in the
interpretation. The associated GO terms can be
ignored. However, the few neurons that have a
high LRP relevance and a NULL rank are much
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more interesting (colored in orange in Fig. 5). For
instance, the neuron associated with GO:0071644
(negative regulation of chemokine (C-C motif) ligand
4 production) has a LRP rank of order 15, but it is
not activated by its target mask. Its target mask
is composed of 2 probes, linked by GO connec-
tions weighted 0.1 and 0.04 respectively. On the
opposite, 890 of the 1000 first noGO connections
from the input layer, which have the same value
with GO connections of norm-1 0.01, point this
neuron. Since these neurons are not activated by
their target mask, we cannot conclude that they
are associated with their corresponding GO term.
We note that a large part of the noGO connections
with high weight is connected to these neurons.
Moreover, these noGO connections connect mainly
probes with no annotation in GO, i.e., probes that
have only noGO connections. We can assume that
the network distorts these neurons from their pri-
mary use to propagate the information of probes
without GO annotations via noGO connections.
These neurons do not represent anymore their cor-
responding GO terms but an unknown biological
information useful for the predictions.

Biological interpretation of the results

In this section, we show how to propose relevant bi-
ological interpretations of the model Deep GONet
and its predictions. We provide three levels of inter-
pretation: the disease level, the subtype of disease
level, and the patient level. First, we study how our
model detects cancer from heterogeneous samples
basing on the neurons activation. Then, we analyze
independently a subtype of cancer by extracting
a subnetwork associated to it from the relevance
scores computed by LRP. We finally present how
the individual prediction of a patient can be ex-
plained.

Model interpretation at disease level

In this subsection, we study the clustering of sam-
ples correctly predicted as cancer according to their
activation profiles. For each sample, an activation
profile constituted of the activation of all neurons
is computed during the forward pass. For each
layer, we define an activation matrix of size (N, Nl)
containing the activation of all neurons of this layer
for all samples, where N is the number of samples,
and Nl the number of neurons in layer l. From
these activation matrices, we perform hierarchical
clustering using the average linkage and the eu-
clidean distance. The dendrograms of each layer

Figure 6: Hierarchical clustering of test samples correctly
predicted as cancer based on their activation pro-
files. Dendrograms are displayed by layer from the
first hidden layer (top) to the sixth hidden layer
(bottom).

are plotted in Fig. 6. The colors on the dendro-
gram represent the type of tissue of the samples.
In the dendrogram of the first hidden layer, we
see that the patients from the same tissues tend to
be grouped into the same clusters. It is especially
the case for bone (colored in orange), blood (col-
ored in red), and lymph node (colored in cyan).
Tissues of the same type tend to share the same ac-
tivation profiles, meaning that some neurons and
their corresponding GO terms are dedicated to one
tissue. This clustering according to the tissue is
still present in layer two although it is less signifi-
cant. From the third hidden layer, the clustering of
samples from the same tissues becomes less clear.
From layer four to six, the clusters contain samples
from different tissues. This means that the same
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GO terms are activated for cancer prediction re-
gardless of the characteristics of the inputs (such
as the localization of the cancer). A signature of
cancer shared by all tissues has been learned in the
last layers of the network.

In conclusion, according to the way our architec-
ture is structured, the lower hidden layers gather
more specific GO terms. The associated neurons
are responsible to extract cancer features particular
to a type of tissue. The model being more general
incrementally, the upper hidden layers are instead
in charge of extracting common cancer features to
any type of tissue. It shows that our classifier is
universal and able to extract the features shared
by various cancers through common GO terms. In
the last hidden layer, the existence of several clus-
ters indicates that different neurons are activated
to provide the same prediction since the signal
from the input layer to the output layer propagates
along different paths. Note that this capacity of
extracting specific patterns in the first layers and
generic patterns in the last layers is well-known in
the deep learning models, which has been widely
studied in the convolutional neural networks for
image analysis (30).

Through the activation profiles, we see how the
information is flowing in the general cancer net-
work. In the next analyses, we will focus on neu-
ron importance by using the relevance score. It’s
a better indicator for more granular results (e.g.,
at subdisease and patient level) to assess exactly
which neurons contribute the most to individual
sample’s outcome.

Model interpretation at subdisease level: breast
cancer

In this subsection, we show how to interpret bio-
logically our model for a specific subtype of cancer.

To this aim, we propose a tool that points out the
main biological functions used for cancer predic-
tions and quantify their contribution. Similarly as
shown in Fig. 4, we first compute the average LRP
relevance of each neuron across a type of cancer
samples from one tissue of interest. Then, for each
layer, the neurons are sorted according to their
relevance score and the most important ones are
returned with their corresponding GO term and
biological function. In Fig. 7, we give an example
on the breast cancer. For each hidden layer, the five
most important biological functions are reported
with their LRP relevance. Note that this tool can
also be used to determine which probes or genes
are the most involved in the predictions.

Figure 7: Interpretation of a subnetwork for breast cancer.
The GO terms are ordered according to their rele-
vance score for each layer. The top-5 GO terms are
given with literature support.
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This interpretation tool can be completed by a
manual search in the literature in order to iden-
tify the links between the returned functions and
the predicted phenotype. Biological and medi-
cal experts can, therefore, judge the relevance of
the prediction based on this final interpretation.
Among all GO terms supporting the prediction
of cancer in this subnetwork, some of them are
known to be related to cancer. The first hidden
layer shows two terms (GO:0015031, GO:0006468)
linked to protein activities that can highlight a
high activity of protein disorder. In the second
layer, both GO:0071420 and GO:1901258 reflect the
immune activity response to cancer (31; 32). The
macrophage colony-stimulating factor is among
one of the growth factors overexpressed in many
tumors. Two additional terms related to protein
(GO:0044257, GO:0006464) are present. On the
third hidden layer, we have GO:0035556 encod-
ing the biological function intracellular signal trans-
duction, part of cell communication. Intracellu-
lar signal transduction is a chain of biochemical
reactions transmitting signals from the cell sur-
face to receptors of various components within
the cell. It finally ends with a cellular response
as a cell state change, i.e., cell growth and many
other processes. It was found that hyperactivity
of these signal pathways can increase the prolif-
eration of abnormal cells (33). In the fourth hid-
den layer, GO:0042127 introduces the uncontrolled
proliferation well known in tumor spread. Be-
tween the fourth and fifth hidden layers, different
GO terms refer to membrane activity (GO:0071709,
GO:0055085, GO:0044091). Many alterations of
the membranes of tumor cells have been detected
such as depolarisation (34). GO:0050794 can point
to the deregulation of cellular processes. Finally,
concerning GO:0006739 in the last hidden layer,
studies show that the quantity of this molecule can
be much higher in cancer cells (35).

Note that if our objective had been to predict
a subtype of cancer, the interpretation and the
subnetworks extracted would be different. The
interpretation of a model depends strongly on the
phenotype prediction problem.

Prediction interpretation of a given patient

In this subsection, we show how to provide a bi-
ological interpretation of the predicted outcome
of one single patient. The objective is to propose
a tool to the physicians and scientists that makes
understandable the prediction computed by the
model for a patient. After our model predicts the

outcome of a patient with a probability score, the
LRP relevance of each neuron is computed. We can
then apply the tool previously presented to obtain
a rank of neurons by layer. Fig. 8 shows an exam-
ple of the biological interpretation that we propose.
In this example, we explain the prediction of the
patient 24509 predicted cancer by Deep GONet
with a probability of 0.99. Note that this patient
is from the breast cancer previous subset. As in
Fig. 7, the top-5 important neurons are reported
with their relevance score.

In the example of Fig. 8, in the first hidden
layer, the term GO:0030335 can highlight the phe-
nomenon of cancer cell invasion into surrounding
tissues, which characterizes the beginning of tu-
mor metastasis (36). In the second hidden layer,
GO:0010737 coding for protein kinase A signaling
can refer to some dysregulations or mutations of
the protein specie which contribute to all stages of
cancer development (37). In the third layer, the top-
5th term (GO:0048864) can inform the production
of cancer stem cells that have similar characteris-
tics with normal stem cells. For the next layers, we
find the same relevant GO terms from the previous
biological interpretation at subdisease level. We
can notice that especially in the first layers (one to
three), there can be some differences in the most
important GO terms for the prediction between
one patient and patients from the same subdis-
ease. In this way, we can identify patients that
have distinct characteristics from the average.

We also observe that less than 1% of non-cancer
samples have LRP relevances higher than those
of the neurons in Fig. 8. It confirms that these
neurons extract patterns characteristic of cancer in
relation with the biological functions (tumor cell
proliferation, protein disorder. . . ).

Discussion

We point out that the goal of the interpretation is
to explain how the model works and not how the
biology works. Sometimes, there are no obvious re-
lations between the biological functions, returned
by the interpretation, and predicted phenotype.
This does not necessarily mean that the predic-
tions are not reliable. We remind that a model
looks for correlations between the output and the
input and not for causalities. When a function,
which seems not related to the phenotype, is re-
turned, it is possible that this function either has
an indirect correlation or is linked by an unknown
causality relation with the phenotype. However,
the more biological functions returned by the in-
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Figure 8: Interpretation of the prediction of the sample 24509.
The GO terms are ordered according to their rele-
vance score for each layer. The top-5 GO terms are
given with literature support.

terpretation are coherent with the phenotype, the
more we can trust the model predictions. If the
most part of the interpretation is incoherent with
the current biological knowledge, the reliability of
the model should be interrogated. The model may
overfit or be mislead by a bias in the training set.

Although the model interpretation is not a tool
for biological discovery, some parts of our neural
network could be investigated in this way. We refer,
in particular, on the high-weighted noGO connec-
tions and neurons diverted from their GO term.
These elements connect to the network the probes
that have not annotations. It could be interesting
to understand why these probes have been used
for prediction, they should be related to the pheno-
type. We could also investigate how the expression
of these probes is combined into the hidden layer.
The probes connected to the same neuron could
have close biological functions related to the pre-
dicted phenotype. Our model can, therefore, help
enrich GO by raising new hypotheses that have to
be validated with further biological experiments.

Conclusion

In this paper, we propose, Deep GONet, a new
self-explainable deep learning model for pheno-
type prediction based on gene expression data. We
demonstrate that its prediction performances are
equivalent to classical deep learning and machine
learning methods. The whole architecture of Deep
GONet is interpretable and easy-understandable
by biologists since it reflects the knowledge that
they usually employ. Each layer of Deep GONet
corresponds to one level of GO and each neuron
to a GO term. The addition of a customized reg-
ularization LGO helps the model to better respect
this knowledge by focusing on the real connections
between the biological objects. The experiments
presented on cancer detection show how to pro-
vide easily an interpretation of the model and its
predictions, understandable by physicians and bi-
ologists. In this paper, the architecture of Deep
GONet is based on GO-BP, but any other ontolo-
gies structured as a DAG (such as GO-CC, GO-MF)
can be implemented in the neural network with
the same approach. In addition, the model can be
applied to other gene expression datasets, or other
prediction tasks such as predicting the type of can-
cer or the prognostic, but it requires a retraining
of the model.

In future works, we plan to improve Deep
GONet by adding neurons to deal with the genes
without GO annotations and a second branch rep-
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resenting the pathways to enrich the biological in-
terpretations. We will finally investigate the links
between the activation of a neuron and the activa-
tion of the corresponding biological function.
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