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Résumé

Dans cet article, nous présentons une stratégie
séquentielle pour l’apprentissage de systèmes de re-
commandation à grande échelle sur la base d’une
rétroaction implicite, principalement sous la forme de
clics. L’approche proposée consiste à minimiser l’erreur
d’ordonnacement sur les blocs de produits consécutifs
constitués d’une séquence de produits non cliqués sui-
vie d’un produit cliqué pour chaque utilisateur. Afin
d’éviter de mettre à jour les paramètres du modèle
sur un nombre anormalement élevé de clics (princi-
palement dus aux bots), nous introduisons un seuil
supérieur et un seuil inférieur sur le nombre de mises à
jour des paramètres pour chaque utilisateur. Ces seuils
sont estimés sur la distribution du nombre de blocs
dans l’ensemble d’apprentissage. Nous proposons une
analyse de convergence de l’algorithme et démontrons
empiriquement son efficacité sur six collections, à la
fois en ce qui concerne les différentes mesures de per-
formance et le temps de calcul.

1 Introduction

With the increasing number of products available
online, there is a surge of interest in the design of au-
tomatic systems that provide personalized recommen-
dations to users by adapting to their taste. The study
of RS has become an active area of research these past
years, especially since the Netflix Price [BL07]. One
characteristic of online recommendation is the huge un-
balance between the available number of products and
those shown to the users. On the other hand, bots that

interact with the system by providing too much feed-
back over some targeted items [KG16]. Contrariwise,
many users do not interact with the system over the
items that are shown to them. In this context, the main
challenges concern the design of a scalable and an effi-
cient online RS in the presence of noise and unbalan-
ced data. These challenges have evolved in time with
the continuous development of data collections released
for competitions or issued from e-commerce. Recent
approaches for RS [WZZ+20] now primarily consider
feedback, mostly in the form of clicks known as im-
plicit feedback, which is challenging to deal with as
they do not depict the preference of a user over items,
i.e., (no)click does not necessarily mean (dis)like. In
this case, most of the developed approaches are based
on the Learning-to-rank paradigm and focus on how
to leverage the click information over the unclick one
without considering the sequence of users’ interactions.
In this paper, we propose SAROSb, a sequential strategy
for recommender systems with implicit feedback that
updates model parameters user per user over blocks of
items constituted by a sequence of unclicked items fol-
lowed by a clicked one. Model parameters are updated
by minimizing the ranking loss over the blocks of un-
clicked items followed by a clicked one using a gradient
descent approach. Updates are discarded for users who
interact very little or a lot with the system. Further-
more, we provide empirical evaluation over six large
publicly available datasets showing that the proposed
approach is highly competitive compared to the state-
of-the-art models in terms of quality metrics and, that
are significantly faster than both the batch and the
online versions of the algorithm.
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2 Related work

Two main approaches have been proposed for re-
commender systems. The first one, Content-Based re-
commendation or cognitive filtering [PB07], makes use
of existing contextual information about the users
(e.g., demographic information) or items (e.g., tex-
tual description) for the recommendation. The second
approach, Collaborative Filtering, is undoubtedly the
most popular one [SK09], relies on past interactions
and recommends items to users based on the feedback
provided by other similar users.

Traditionally, collaborative filtering systems have
been designed using explicit feedback, mostly in the
form of rating [Kor08]. However, rating information is
non-existent on most of e-commerce websites and is
challenging to collect, and user interactions are often
done sequentially. Recent RS systems focus on learning
scoring functions using implicit feedback to assign hi-
gher scores to clicked items than to unclicked ones ra-
ther than to predict the clicks as it is usually the case
when we deal with explicit feedback [STH+21]. The
idea here is that even a clicked item does not necessa-
rily express the preference of a user for that item, it
has much more value than a set of unclicked items for
which no action has been made.

Many new approaches tackle the sequential learning
problem for RS by taking into account the temporal
aspect of interactions directly in the design of a dedi-
cated model and are mainly based on Markov Models
(MM), Reinforcement Learning (RL), and Recurrent
Neural Networks (RNN) [DLZ17]. Recommender sys-
tems based on Markov Models, consider a subsequent
interaction of users as a stochastic process over discrete
random variables related to predefined user behavior.
These approaches suffer from some limitations, mainly
due to the sparsity of the data leading to a poor es-
timation of the transition matrix and choice of an ap-
propriate order for the model [HM16]. Various strate-
gies have been proposed to leverage the limitations of
Markov Models. For instance, [HM16] suggests combi-
ning similarity-based methods with high-order Markov
Chains. Although it has been shown that in some cases,
the proposed approaches can capture the temporal as-
pect of user interactions, these models suffer from a
high time-complexity and do not pass the scale. Some
other methods consider RS as a Markov decision pro-
cess (MDP) problem and solve it using reinforcement
learning (RL) [TB14]. The size of discrete actions brin-
ging the RL solver to a larger class of problems is also a
bottleneck for these approaches. Recently many Recur-
rent Neural Networks (RNN) such as GRU or LSTM

have been proposed for personalized recommendations
[KM18]. In this approach, the input of the network is
generally the sequence of user interactions consisted
of a single behaviour type (click, adding to favourites,
purchase, etc.) and the output is the predicted prefe-
rence over items in the form of posterior probabilities of
the considered behaviour type given the items. A com-
prehensive survey of Neural Networks based sequential
approaches for personalized recommendation is presen-
ted in [FZSG20]. All these approaches do not consider
negative interactions ; i.e. viewed items that are not
clicked or purchased ; and the system’s performance on
new test data may be affected.

Our approach differs from other sequential based me-
thods in the way that the model parameters are upda-
ted, at each time a block of unclicked items followed
by a clicked one is constituted. This update scheme
follows the hypothesis that user preference is not abso-
lute over the items which were clicked, but it is relative
with respect to items that were viewed. We further pro-
vide a proof of convergence of the proposed approach
in the general case of non-convex loss functions in the
case where the number of blocks per user interaction is
controlled.

3 Framework

Throughout, we use the following notation. For any
positive integer n, [n] denotes the set [n] = {1, . . . , n}.
We suppose that I = [M ] and U = [N ] are two sets
of indexes defined over respectively the items and the
users. Further, we assume that each pair constituted by
a user u and an item i is identically and independently
distributed (i.i.d) according to a fixed yet unknown dis-
tribution D. At the end of his or her session, a user
u ∈ U has reviewed a subset of items Iu ⊆ I that can
be decomposed into two sets : the set of preferred and
non-preferred items denoted by I+

u and I−u , respecti-
vely. Hence, for each pair of items (i, i′) ∈ I+

u × I−u ,
the user u prefers item i over item i′ ; symbolized by
the relation i�

u
i′. From this preference relation a desi-

red output yu,i,i′ ∈ {−1,+1} is defined over the pairs
(u, i) ∈ U ×I and (u, i′) ∈ U ×I, such that yu,i,i′ = +1
if and only if i �

u
i′. We suppose that the indexes of

users as well as those of items in the set Iu, shown to
the active user u ∈ U , are ordered by time.

Finally, for each user u, parameter updates are per-
formed over blocks of consecutive items where a block
Btu = Nt

utΠt
u, corresponds to a time-ordered sequence

(w.r.t. the time when the interaction is done) of no-
preferred items, Nt

u, and at least one preferred one,
Πt
u. Hence, I+

u =
⋃
t Πt

u and I−u =
⋃
t Nt

u;∀u ∈ U .
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3.1 Learning Objective

Our objective here is to minimize an expected er-
ror penalizing the misordering of all pairs of interacted
items i and i′ for a user u. Commonly, this objective is
given under the Empirical Risk Minimization (ERM)
principle, by minimizing the empirical ranking loss es-
timated over the items and the final set of users who
interacted with the system :

L̂u(ω)=
1

|I+
u ||I−u |

∑
i∈I+u

∑
i′∈I−u

`u,i,i′(ω), (1)

where, `u,i,i′(.) is an instantaneous ranking loss defined

over the triplet (u, i, i′) with i�
u
i′. Hence, L̂u(ω) is the

pairwise ranking loss with respect to user’s interactions

and L(ω) = Eu
[
L̂u(ω)

]
is the expected ranking loss,

where Eu is the expectation with respect to users cho-
sen randomly according to the marginal distribution.

As in other studies, we represent each user u and
each item i respectively by vectors Ūu ∈ Rk and Īi ∈ Rk
in the same latent space of dimension k [KBV09]. The
set of weights to be found ω = (Ū , Ī), are then ma-
trices formed by the vector representations of users
Ū = (Ūu)u∈[N ] ∈ RN×k and items Ī = (Īi)i∈[M ] ∈
RM×k. A common approach is to minimize the above
ranking loss in batch mode with the goal of finding
user and item embeddings, so that the dot product
between these representations in the latent space bet-
ter reflects the preference of users over items. Other
strategies have been proposed to minimize this empiri-
cal loss (1), among which the most popular one is per-
haps the Bayesian Personalized Ranking (BPR) model
[RFGST09]. In this approach, the instantaneous loss,
`u,i,i′ , is the surrogate regularized logistic loss for some
hyperparameter µ ≥ 0 :

`u,i,i′(ω) = log
(

1 + e−yu,i,i′ Ū
>
u (Īi−Īi′ )

)
+ µ(‖Ūu‖22 + ‖Īi‖22 + ‖Īi′‖22) (2)

The BPR algorithm proceeds by first randomly choo-
sing a user u, and then repeatedly selecting two pairs
(i, i′) ∈ Iu × Iu. In the case where one of the cho-
sen items is preferred over the other one (i.e., yu,i,i′ ∈
{−1,+1}), the algorithm then updates the weights
using the stochastic gradient descent method for mi-
nimizing (1).

3.2 Algorithm SAROS

A key point in recommendation is that user prefe-
rences for items are largely determined by the context

in which they are presented to the user. A user may
prefer (or not) two items independently of one another,
but he or she may have a totally different preference
for these items within a given set of shown items. This
effect of local preference is not taken into account by
randomly sampling triplets formed by a user and cor-
responding clicked and unclicked items over the entire
set of shown items to the user. Furthermore, triplets
corresponding to different users are non uniformly dis-
tributed, as interactions vary from one user to ano-
ther one, and for parameter updates ; triplets corres-
ponding to low interactions have a small chance to be
chosen. In order to tackle these points ; we propose to
update the parameters sequentially over the blocks of
non-preferred items followed by preferred ones for each
user u. The constitution of sequences of non-preferred
and preferred blocks of items respectively noted as Nt

u

and Πut for t ∈ {1, . . . , Bu}, and, two users is shown
in Figure 1.
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Figure 1 – The horizontal axis represents the sequence
of interactions over items ordered by time. Each update
of weights ωtu; t ∈ {1, . . . , Bu} occurs whenever the cor-
responding sets of negative interactions, Nt

u, and posi-
tive ones, Πt

u, exist.

In this case, at each time t a block Btu = Nt
u tΠt

u is
formed for user u ; weights are updated by miniminzing
the ranking loss corresponding to this block :

L̂Bt
u
(ωtu) =

1

|Πt
u||Nt

u|
∑
i∈Πt

u

∑
i′∈Nt

u

`u,i,i′(ω
t
u). (3)

Note that this is different from session-based recom-
mendations [WCW+19] in which each session is also
made up of a series of user-item interactions that take
place over a period of time. However, session-based re-
commendations approaches capture both user’s short-
term preference from recent sessions and the preference
dynamics representing the change of preferences from
one session to the next by using each session as the
basic input unit, which is not the case in our study.

Starting from initial weights ω0
1 chosen randomly for

the first user. The sequential update rule, for each cur-
rent user u consists in updating the weights by ma-
king one step towards the opposite direction of the
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gradient of the ranking loss estimated on the current
block, Btu = Nt

u tΠt
u :

ωt+1
u = ωtu −

η

|Nt
u||Πt

u|
∑
i∈Πt

u

∑
i′∈Nt

u

∇`u,i,i′(ωtu) (4)

For a given user u, parameter updates are discarded
if the number of blocks (Btu)t for the current user falls
outside the interval [b, B]. In this case, parameters are
initialized with respect to the latest update before user
u and they are updated with respect to a new user’s
interactions.

3.3 Convergence analysis

The proofs of convergence is given under a common
hypothesis that the sample distribution is not instan-
taneously affected by learning of the weights, i.e. the
samples can be considered as i.i.d. More precisely, we
assume the following hypothesis.

Assumption 1. For an i.i.d. sequence of user and any
u, t ≥ 1, we have

1. E(u,Bt
u)‖∇L(ωtu)−∇L̂Bt

u
(ωtu)‖22 ≤ σ2,

2. For any u,∣∣∣EBt
u|u〈∇L(ωtu),∇L(ωtu)−∇L̂Bt

u
(ωtu)〉

∣∣∣
≤ a2‖∇L(ωtu)‖22

for some parameters σ > 0 and a ∈ [0, 1/2) inde-
pendent of u and t.

The first assumption is common in stochastic opti-
mization and it implies consistency of the sample ave-
rage approximation of the gradient. However, this as-
sumption is not sufficient to prove the convergence be-
cause of interdependency of different blocks of items
for the same user. The second assumption implies that
in the neighborhood of the optimal point, we have
∇L(ωtu)>∇L̂Bt

u
(ωtu) ≈ ‖∇L(ωtu)‖22, which greatly helps

to establish consistency and convergence rates. In par-
ticular, if an empirical estimate of the loss over a block
is unbiased, e.g. EBt

u
∇L̂Bt

u
(ω) = ∇L(ω), the second

assumption is satisfied with a = 0.

Theorem 1. Let ` be a (possibly non-convex) β-
smooth loss function. Assume, moreover, that the num-
ber of interactions per user belongs to an interval [b, B]
almost surely and assumption 1 is satisfied with some
constants σ2 and a, 0 < a < 1/2. Then, for a step-size

policy ηtu ≡ ηu with ηu ≤ 1/(Bβ) for any user u, one
has

min
u: 1≤u≤N

E‖∇L(ω0
u)‖22 ≤

2(L(ω0
1)− L(ω0

u)) + βσ2
∑N
u=1

∑|Bu|
t=1 (ηtu)2∑N

u=1

∑|Bu|
t=1 η

t
u(1− a2 − βηtu(1/2− a2))

.

In particular, for a constant step-size policy ηtu = η =
c/
√
N satisfies ηβ ≤ 1, one has

min
t,u
‖∇L(ωtu)‖22 ≤

2

b(1− 4a2)

2(L(ω0
1)− L(ω∗))/c+ βcσ2B√

N
.

Démonstration. Since ` is a β smooth function, we have
for any u and t :

L(ωt+1
u ) ≤ L(ωtu) + 〈∇L(ωtu), ωt+1

u − ωtu〉

+
β

2
(ηtu)2‖∇L̂Bt

u
(ωtu)‖22

= L(ωtu)− ηtu〈∇L(ωtu),∇L̂Bt
u
(ωtu)〉

+
β

2
(ηtu)2‖∇L̂Bt

u
(ωtu)‖22

Following [Lan20] ; by denoting δtu = ∇L̂Bt
u
(ωtu) −

∇L(ωtu), we have :

L(ωt+1
u ) ≤ L(ωtu) +

β(ηtu)2

2
‖δtu‖22

−
(
ηiu −

β(ηtu)2

2

)
‖∇L(ωtu)‖22

−
(
ηtu − β(ηtu)2

)
〈∇L(ωtu), δtu〉 (5)

Our next step is to take the expectation on both sides
of inequality (5). According to Assumption 1, one has
for some a ∈ [0, 1/2) :

(
ηtu−β(ηtu)2

)∣∣E〈∇L(ωtu), δtu〉
∣∣≤(ηtu−β(ηtu)2

)
a2‖∇L(ωtu)‖22

where the expectation is taken over the set of blocks
and users seen so far.

Finally, taking the same expectation on both sides
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of inequality (5), it comes :

L(ωt+1
u ) ≤ L(ωtu) +

β

2
(ηtu)2E‖δtu‖22

− ηtu(1− βηtu/2− a2|1− βηtu|)‖∇L(ωtu)‖22
≤ L(ωtu) +

β

2
(ηtu)2‖δtu‖22

− ηtu (1− a2 − βηtu(1/2− a2))︸ ︷︷ ︸
:=ztu

‖∇L(ωtu)‖22

= L(ωtu) +
β

2
(ηtu)2‖δtu‖22 − ηtuztu‖∇L(ωtu)‖22

= L(ωtu) +
β

2
(ηtu)2σ2 − ηtuztu‖∇L(ωtu)‖22, (6)

where the second inequality is due to |ηtuβ| ≤ 1. Also,
as |ηtuβ| ≤ 1 and a2 ∈ [0, 1/2) one has ztu > 0 for any
u, t. Rearranging the terms, one has

min
t,u
‖∇L(ωtu)‖22

≤ L(ω0
1)− L(ω∗) + β

2

∑N
u=1

∑|Bu|
t=1 (ηtu)2σ2∑N

u=1

∑|Bu|
t=1 η

t
uz
t
u

≤ L(ω0
1)− L(ω∗) + β

2

∑N
u=1

∑|Bu|
t=1 (ηtu)2σ2∑N

u=1

∑|Bu|
t=1 η

t
u(1− a2 − βηtu(1/2− a2))

Where, ω∗ is the optimal point. Then, using a constant
step-size policy, ηiu = η, and the bounds on a block size,
b ≤ |Bu| ≤ B, we get :

min
t,u
‖∇L(ωtu)‖22

≤ L(ω0
1)− L(ω∗) + βσ2

2 N
∑N
u=1 η

2
u

b
∑N
u=1 ηu(1− a2 − βηu(1/2− a2))

≤ 4L(ω0
1)− 4L(ω∗) + 2βσ2B

∑N
u=1 η

2

b(1− 4a2)
∑N
u=1 η

≤ 2

b(1− 4a2)

{
2L(ω0

1)− 2L(ω∗)

Nη
+ βσ2Bη

}
.

Taking η = c/
√
N so that 0 < η ≤ 1/β, one has

min
t,u
‖∇L(ωtu)‖22

≤ 2

b(1− 4a2)

2(L(ω0
1)− L(ω∗))/c+ βcσ2B√

N
.

If b = B = 1, this rate matches up to a constant fac-
tor to the standard O(1/

√
N) rate of the stochastic

gradient descent.

4 Experiments

In this section, we provide an empirical evaluation
of our optimization strategy on some popular bench-

marks proposed for evaluating RS. All subsequently
discussed components were implemented in Python3
using the TensorFlow library 1. We first proceed with
a presentation of the general experimental set-up, in-
cluding a description of the datasets and the baseline
models.

Datasets. We report results obtained on five pu-
blicly available datasets, for the task of personalized
Top-N recommendation on the following collections.
ML-1M [HK15] and Netflix consist of user-movie ra-
tings, on a scale of one to five, collected from a movie
recommendation service and the Netflix company. The
latter was released to support the Netflix Prize com-
petition [BL07]. For both datasets, we consider ratings
greater or equal to 4 as positive feedback, and others
as negative feedback. We extracted a subset out of the
Outbrain dataset from of the Kaggle challenge that
consisted in the recommendation of news content to
users based on the 1,597,426 implicit feedback collec-
ted from multiple publisher sites in the United States.
Pandor is another publicly available dataset for on-
line recommendation [SLA18] provided by Purch. The
dataset records 2,073,379 clicks generated by 177,366
users of one of the Purch’s high-tech website over 9,077
ads they have been shown during one month. Rec-
Sys’16 is a sample based on historic XING data pro-
vided 6,330,562 feedback given by 39,518 users on the
job posting items and the items generated by XING’s
job recommender system. Kasandr dataset [SLA+17]
contains 15,844,717 interactions of 2,158,859 users in
Germany using Kelkoo’s online advertising platform.
Table 1 presents some detailed statistics about each
collection. Among these, we report the average num-
ber of clicks (positive feedback) and the average num-
ber of items that were viewed but not clicked (negative
feedback). As we see from the table, Outbrain, Ka-
sandr, and Pandor datasets are the most unbalanced
ones in regards to the number of preferred and non-
preferred items. To construct the training and the test
sets, we discarded users who did not interact over the
shown items and sorted all interactions according to
time-based on the existing time-stamps related to each
dataset. Furthermore, we considered 80% of each user’s
first interactions (both positive and negative) for trai-
ning, and the remaining for the test. Finally, we have
used 10% of the most recent interactions of users in
the training set as validation set for hyperparameter
tuning.

Compared approaches. To validate the sequential
learning approach described in the previous sections,

1. https://www.tensorflow.org/.
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Data |U| |I| Sparsity Avg. # of + Avg. # of −
ML-1M 6,040 3,706 .9553 95.2767 70.4690
Outbrain 49,615 105,176 .9997 6.1587 26.0377
Pandor 177,366 9,077 .9987 1.3266 10.3632
Netflix 90,137 3,560 .9914 26.1872 20.2765
RecSys’16 39,518 28,068 .9943 26.2876 133.9068
Kasandr 2,158,859 291,485 .9999 2.4202 51.9384

Table 1 – Statistics on the # of users and items ; as
well as the sparsity and the average number of + (pre-
ferred) and − (non-preferred) items on different collec-
tions after preprocessing.

we compared the proposed SAROS algorithm 2 with the
following approaches. ; MostPop is a non-learning based
approach which consists in recommending the same set
of popular items to all users ; Matrix Factorization (MF)
[Kor08], is a factor model which decomposes the matrix
of user-item interactions into a set of low dimensional
vectors in the same latent space, by minimizing a re-
gularized least square error between the actual value
of the scores and the dot product over the user and
item representations. BPR [RFGST09] corresponds to
the model described in the problem statement above
(Section 3.1), a stochastic gradient-descent algorithm,
based on bootstrap sampling of training triplets, and
BPRb the batch version of the model which consists in
finding the model parameters ω = (Ū , Ī) by minimi-
zing the ranking loss over all the set of triplets si-
multaneously (Eq. 1). Prod2Vec [GRD+15], learns the
representation of items using a Neural Networks ba-
sed model, called word2vec [MCCD13], and performs
next-items recommendation using the similarity bet-
ween the representations of items. GRU4Rec+ [HK18]
is an extended version of GRU4Rec [HKBT16] adopted
to different loss functions, that applies recurrent neu-
ral network with a GRU architecture for session-based
recommendation. The approach considers the session
as the sequence of clicks of the user and learns model
parameters by optimizing a regularized approximation
of the relative rank of the relevant item which favors
the preferred items to be ranked at the top of the list.
Caser [TW18] is a CNN based model that embeds a
sequence of clicked items into a temporal image and
latent spaces and find local characteristics of the tem-
poral image using convolution filters. SASRec [KM18]
uses an attention mechanism to capture long-term se-
mantics in the sequence of clicked items and then pre-
dicts the next item to present based on a user’s action
history. LightGCN [HDW+20] is a graph convolution
network which learns user and item embedding by li-
nearly propagating them on the user-item interaction

2. The source code is available at https://github.com/

SashaBurashnikova/SAROS.

graph. The final representations are the weighted sum
of the embeddings learned at all layers.

Hyper-parameters of different models and the dimen-
sion of the embedded space for the representation of
users and items ; as well as the regularisation parame-
ter over the norms of the embeddings for all approaches
were found using grid search on the validation set.

We fixed b and B, used in SAROSb, to respectively
the minimum and the average number of blocks found
on the training set of each corresponding collection.
With the average number of blocks being greater than
the median on all collections, the motivation here is
to consider the maximum number of blocks by preser-
ving the model from the bias brought by the too many
interactions of the very few number of users.

Experimental results. We compare the per-
formance of all the approaches on the basis of the
common ranking metrics, which are the Mean Average
Precision at rank K (MAP@K) over all users defined

as MAP@K = 1
N

∑N
u=1 AP@K(u), where AP@K(u) is the

average precision of preferred items of user u in the
top K ranked ones ; and the Normalized Discounted
Cumulative Gain at rank K (NDCG@K) that computes
the ratio of the obtained ranking to the ideal case and
allow to consider not only binary relevance as in Mean

Average Precision, NDCG@K = 1
N

∑N
u=1

DCG@K(u)
IDCG@K(u) , where

DCG@K(u) =
∑K
i=1

2reli−1
log2(1+i) , reli is the graded relevance

of the item at position i ; and IDCG@K(u) is DCG@K(u)

with an ideal ordering equals to
∑K
i=1

1
log2(1+i) for

reli ∈ [0, 1] [SMR08].

Table 2 presents NDCG@5 and NDCG@10 (top), and
MAP@5 and MAP@10 (down) of all approaches over the
test sets of the different collections. The non-machine
learning method, MostPop, gives results of an order of
magnitude lower than the learning based approaches.
Moreover, the factorization model MF which predicts
clicks by matrix completion is less effective when dea-
ling with implicit feedback than ranking based models
especially on large datasets where there are fewer inter-
actions. We also found that embeddings found by ran-
king based models, in the way that the user preference
over the pairs of items is preserved in the embedded
space by the dot product, are more robust than the
ones found by Prod2Vec. When comparing GRU4Rec+
with BPR that also minimizes the same surrogate ran-
king loss, the former outperforms it in case of Ka-
sandr with a huge imbalance between positive and
negative interactions.

This is mainly because GRU4Rec+ optimizes an ap-
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NDCG@5 NDCG@10

ML-1M Outbrain Pandor Netflix Kasandr RecSys’16 ML-1M Outbrain Pandor Netflix Kasandr RecSys’16
MostPop .090 .011 .005 .056 .002 .004 .130 .014 .008 .096 .002 .007
Prod2Vec .758 .232 .078 .712 .012 .219 .842 .232 .080 .770 .012 .307

MF .684 .612 .300 .795 .197 .317 .805 .684 .303 .834 .219 .396
BPRb .652 .583 .874 .770 .567 .353 .784 .658 .890 .849 .616 .468
BPR .776 .671 .889 .854 .603 .575 .863 .724 .905 .903 .650 .673

GRU4Rec+ .721 .633 .843 .777 .760 .507 .833 .680 .862 .854 .782 .613
Caser .665 .585 .647 .750 .241 .225 .787 .658 .666 .834 .276 .225
SASRec .721 .645 .852 .819 .569 .509 .832 .704 .873 .883 .625 .605
LightGCN .784 .652 .901 .836 .947 .428 .874 .710 .915 .895 .954 .535
SAROSb .788 .710 .904 .866 .791 .563 .874 .755 .917 .914 .815 .662

MAP@5 MAP@10

ML-1M Outbrain Pandor Netflix Kasandr RecSys’16 ML-1M Outbrain Pandor Netflix Kasandr RecSys’16
MostPop .074 .007 .003 .039 .002 .003 .083 .009 .004 .051 .3e-5 .004
Prod2Vec .793 .228 .063 .669 .012 .210 .772 .228 .063 .690 .012 .220

MF .733 .531 .266 .793 .170 .312 .718 .522 .267 .778 .176 .306
BPRb .713 .477 .685 .764 .473 .343 .688 .477 .690 .748 .488 .356
BPR .826 .573 .734 .855 .507 .578 .797 .563 .760 .835 .521 .571

GRU4Rec+ .777 .513 .673 .774 .719 .521 .750 .509 .677 .757 .720 .500
Caser .718 .471 .522 .749 .186 .218 .694 .473 .527 .733 .197 .218
SASRec .776 .542 .682 .819 .480 .521 .751 .534 .687 .799 .495 .511
LightGCN .836 .502 .793 .835 .939 .428 .806 .507 .796 .817 .939 .434
SAROSb .832 .619 .756 .866 .732 .570 .808 .607 .759 .846 .747 .561

Table 2 – Comparison of different approaches in terms of NDCG@5 and NDCG@10(top), and MAP@5 and
MAP@10(down). Best performance is in bold and the second best is underlined.

proximation of the relative rank that favors interacted
items to be in the top of the ranked list while the lo-
gistic ranking loss, which is mostly related to the Area
under the ROC curve [UAG05], pushes up clicked items
for having good ranks in average. However, the mini-
mization of the logistic ranking loss over blocks of very
small size pushes the clicked item to be ranked higher
than the no-clicked ones in several lists of small size
and it has the effect of favoring the clicked item to be
at the top of the whole merged lists of items. Moreo-
ver, it comes out that SAROS is the most competitive
approach ; performing better than other techniques, or,
is the second best performing method over all collec-
tions.

5 Conclusion

The contributions of this paper are twofold. First, we
proposed SAROS, a novel learning framework for large-
scale Recommender Systems that sequentially updates
the weights of a ranking function user by user over
blocks of items ordered by time where each block is
a sequence of negative items followed by a last po-
sitive one. We bounded the deviation of the ranking
loss concerning the sequence of weights found by the
algorithm and its minimum in the general case of non-
convex ranking loss, and showed the efficiency of the
approach on six real-life implicit feedback datasets.
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