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Digitalization of the production lines 

State of the art 

The manifold learning assumption

Increase of:
● the amount of data
● the diversity of sensors

High cost of data labeling

⇒ Highly imbalanced ratio  

between the two populations.

Unlabeled

Labeled

#Samples

Unlabeled samples remains a poorly 
exploited source of information.

Observables data are sampled from of a low 
dimensional manifold that is embedded inside of a 
higher-dimensional vector space.

Linear: PCA, MDS (Multidimensional Scaling)
Non-linear: Kernel PCA, ISOMAP, LLE (Locally Linear 
Embedding) and Laplacian Eigenmaps
Deep learning: Auto-Encoder, Variational 
Auto-Encoder

True
distribution

Observables
samples
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Manifold hypothesis on industrial data Industrial problematic

t

t

tt0
For any date t0 , the interactions between the 
sensor variables x0  , x1 , … ,xn  are smoothed enough 
to be modeled by a lower dimensional manifold.

x0

x1

xn

Shifting a process from one setpoint A to another 
setpoint B raises the risk of applying inappropriate 
set of parameters.

Low density region
 =

Risk of quality 
degradation and 

breakdown

High density region 
= 

Low industrial risk

A

B

Objectives of this work:
● Designing a scalable manifold learning model.
● Using the model to safely explore the manifold 

of process variables.
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Neighbor graph common issues:

● Lack of robustness to noise and high 
curvature of the space.

● Has an exponential time complexity in the 
dimension of the data.

How a VAE can mitigate these issues ?:

● The low dimensional latent space reduces the 
computational time significantly.

● The reconstruction loss can be used to filter 
the input samples, acting like a smoothing 
function.

Advantages of the graph framework:

● Provides fast path search algorithms.
● Makes the incorporation of business 

metrics very convenient.

Contribution: Combining neighbor graph 
and VAE

Learning a statistical representation of non 
linear manifolds with VAE

zqφ(z|x) pθ(x|z)x x* ~ N(μx, σx) 
μz

σz

Sampling
N(μz, σz) 

Latent space

Architecture of a Variational AutoEncoder (VAE)

Loss function
Loss = Reconstruction_Loss + Regularization_loss

MSE(x, μx) KL Divergence(z, N(0, 1))

With: dim(z) << dim(x*)
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Experiment on the two moons dataset  

Noisy two moons 1D manifold learned by 
a VAE

Graph on original data Graph on smoothed 
data

Smoothing noisy data with a VAE

For any input sample                , the VAE 
computes its averaged version                     . .

And the quadratic error          between     and      
informs about the likelihood of     .

Filtering out points according to their reconstruction 
error:
● Removes the outliers from the scope of the graph 

computation,
● Reduces the likelihood of connecting the two 

clusters.

Smoothing: Building the nearest neighbor graph 
on the sublevel set of     with level     : 
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Experiment on a synthetic 3D parabola

True manifold Random samples

Learned manifold 2D latent space

Training a VAE on random samples:

Comparison of distances 
between each point of the 

trajectories and the nearest 
point from the true manifold

Comparison of trajectories  between two 
diametrically opposite samples:

Comparison of 
trajectories embedded in 

the real space.

● Shortest paths (with A* algorithm) in the latent space and 
in the averaged data                  follow the underlying 
manifold. 

● The path built on the original data doesn’t respect the 
curvature
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Application on industrial data

Three industrial datasets taken from Kaggle:

Source #Features #Samples #Latent 
dimensions

Roasting Machine 17 2M 4

Bosch production line 
station L0S0 11 670K 6

Bosch production line 
station L1S24 169 180K 16

Experimental pipeline:

Latent 
space

Encoder

2D PCA

Process data

Nearest 
neighbor 

graph

Visualization of shortest path between 
two distinct setpoints

Manifold 
learning
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Results

Shortest paths 
projected on the two 
first PCA components

Likelihood of 
intermediary points 

along the path
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● The paths computed in the real space are sensitively different from the ones computed on the 
latent space and on the averaged data.

● The values of the likelihoods along each path show that points on the path computed with the 
real data tend to be less likely in the sense of the distribution learned by the VAE.



Incorporating business metrics into the weights of 
the graph:

Roasting machine
30k samples 

labelled with the 
output quality

Weighted nearest 
neighbor graph

Smoothing of the target 
with a Multi Layer 
Perceptron

Results

Smoothed target

Shortest path in a neighbor graph with custom 
weights
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● Any business metric can be incorporated into the weights in order 
to add an additional constraint on the shortest path search.

● Smoothing the distribution of the business metric with a 
regression model helps regularizing the path.



Limitations of the VAE

References

Perspectives

● The latent space doesn’t preserve distances.

● Doesn’t handle disconnected manifolds.

● Using the learned variance as metric for dynamically 
adapting the connectivity criterion in the graph.

● Extending the approach to categorical variables.
● Experimenting more sophisticated weighting formulas.
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Main contributions

● Experimentation of the usage of a VAE as a smoothing 
step before the construction of a nearest neighbor 
graph.

● Exploration of the manifold of industrial processes with 
the resulting graph. 

● Weights customization with a business metric 



Thank you for your attention
blollivier@fieldbox.ai
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Loss function of VAE
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For any    
    , and 

 

Architecture of the VAE network 

Task Computational time* 
(Order of magnitude)

VAE training 5 - 10 min

5-nearest neighbors graph construction 10 sec

Finding shortest path in the graph 1 sec

vae = VAE(

   input_dim=input_dim,

   latent_dims=[laten_dim],

   enc_mlp_hidden_units_list=[

[input_dim, int(input_dim/2)]

   ],

   activation='tanh',

   reconstruct_var=False

)

* With Intel® Core™ i7-8850H CPU @ 2.60GHz × 12


