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Motivation

Time series classification (TSC) has gained a lot of
interest during the last decade.

Diverse range of applications such as galaxy and stars
classification, sleep detection, power consumption analysis,
pathogen identification, etc

Many effective methods (HIVE-COTE, ROCKET,
TS-CHIEF, STC, etc) but none is scalable, accurate and
interpretable.

Classification using shapelet features is interpretable,
accurate but not scalable

Goal

Build a shapelet method that is accurate, interpretable and
scalable
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Basic notions

Time series of length m: T = (t1, t2, ...,Tm), ti ∈ R

Subsequence of length l in T :
S = (s1, s2, ..., sl) = (tj , tj+1, ..., tj+l)

Distance between S and T :

dist(T ,S) = min
∀R∈Wl

({
l∑

i=1

(ri − si )
2})

Separator: a subsequence S that divides a time series
dataset in two groups.

Shapelet: a separator that maximizes the information gain

Fig. 1: Shapelet illustration
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Overview of Shapelet Transform Classification
[Hills et al., 2014]

Fig. 2: Overview of Shapelet Transform Classification
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Overview of Shapelet Transform Classification
[Hills et al., 2014]

Fig. 2: Overview of Shapelet Transform Classification

Fig. 3: A shapelet decision tree that could
be obtained after STC training
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Overview of Shapelet Transform Classification
[Hills et al., 2014]

Fig. 2: Overview of Shapelet Transform Classification

Strengths

Accurate

Robust to outliers

Interpretable

Limitations

Time complexity:
O(n2m4)

Prone to overfitting
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Inspiration

Fig. 3: Illustration of invariance in recognition Heeger [2002-2014]

Definition

Core object recognition is the ability to recognize objects
despite substantial appearance variations [DiCarlo et al., 2012]
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From core object recognition to core shapelet
recognition

Definition

Core shapelet recognition is the ability to recognize any
variant of a shapelet from one or a few number of its variants

Our claims for building a core shapelet recognition-based time
series classifier:

1 It should not be necessary to assess a lot of variants of a
shapelet candidate

2 Any single time series should contain all the shapelets of
its corresponding class.

3 Filtering shapelet candidates beforehand of classification
could lead to an inaccurate model

4 The classifier could automatically learn the best shapelets
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Core shapelet recognition
Illustration with the Chinatown dataset

Fig. 4: Three random instances from the Chinatown dataset

Fig. 5: Shapelet learned by STC. Accuracy = 0.97, Running time = 51 secs

Fig. 6: Shapelet learned by STC-1. Accuracy = 0.96, Running time = 10 secs
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SAST: Scalable and Accurate Subsequence
Transform

Fig. 6: Overview of time series classification using SAST

Unlike STC, SAST

Use one instance per class to build the shapelet space

Does not prune shapelet candidates beforehand of
classification

Has a time complexity O(nm3)
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Setup
Datasets and models

Datasets

72 datasets from the UCR & UEA archive

Already split in train/test

Diverse problem types and properties

Models

Shapelet based

STC, STC-k
ELIS++, LS, FS

Non-shapelet based:

HIVE-COTE
ROCKET
TS-CHIEF
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Setup
Implementation and parameters

Implementation

Implemented in Python

Compatible with Scikit-learn API

Open source: https://github.com/frankl1/sast

STC, STC-k and SAST parameters

classifier: Ridge classifier with LOO-CV

Shapelet length = {3, 4, ...,m}
k = {1, 0.25, 0.5, 0.75}, always 1 for SAST

STC and STC-k time contract: 1 hour

https://github.com/frankl1/sast
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classifier: Ridge classifier with LOO-CV

Shapelet length = {3, 4, ...,m}
k = {1, 0.25, 0.5, 0.75}, always 1 for SAST

STC and STC-k time contract: 1 hour

https://github.com/frankl1/sast
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STC-k accuracy results

Fig. 7: STC(69 wins) vs STC-1 (1 win), 2 draws Fig. 8: STC(50 wins) vs STC-0.75 (16 win), 6 draws

Fig. 9: Critical difference diagram between STC-k models
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SAST vs STC

Fig. 10: SAST(66 wins) vs STC-1 (5 win), 1 draw Fig. 11: SAST(43 wins) vs STC (27 win), 2 draws

Fig. 12: Critical difference diagram between SAST, STC and STC-k
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SAST vs other shapelet methods
The 35 datasets used in the ELIS++ paper

Fig. 13: SAST(12 wins) vs ELIS++ (22 win), 1 draw Fig. 14: SAST(17 wins) vs LS (16 win), 2 draws

Fig. 15: SAST(30 wins) vs FS (4 win), 1 draw
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SAST vs other shapelet methods
The 35 datasets used in the ELIS++ paper

Fig. 16: Critical difference diagram between SAST and other shapelet methods

Fig. 17: Win percentage per problem type
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SAST vs non-shapelet methods
67 datasets for which results are published on the UEA & UCR archive

Fig. 18: SAST (5 wins) vs ROCKET (58 wins), 4
draws

Fig. 19: SAST (10 wins) vs HC (53 win), 4 draws

Fig. 20: SAST (9 wins) vs TS-CHIEF (55 win), 3 draws
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SAST vs non-shapelet methods
67 datasets for which results are published on the UEA & UCR archive

Average accuracies are 0.84± 0.12 (SAST), 0.88± 0.11
(ROCKET), 0.88±0.11 (HC) and 0.88±0.12 (TS-CHIEF)

No statistical difference among the four models

Fig. 21: Win percentage per problem type
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Scalability results

SASTEN: ensemble of 3 SAST models
SASTEN-A: ensemble of 3 SAST models, each one
working on shapelet length in intervals [3; 9], [10; 16] and
[17, 23] respectivelly

Fig. 22: Regarding the number of time series

Nb of TS 64 1024

SAST 2 7
STC 720 67000

Speedup 36× ∼ 9500×

Fig. 23: Regarding the time series length

TS length 64 256

SAST 13 892
STC 6016 100585

Speedup ∼ 462× ∼ 112×
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How to explain SAST?

SAST is explained by identifying the top best features (i.e
shapelets) learned by the classifier:

For linear models, the subsequences with the highest
weight norms

For decision tree models, the subsequences with the
highest information gains

In any case, a post-hoc method such as LIME, SHAP,
Saliency maps
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Top best shapelets learned by SAST on the
Chinatown dataset

Fig. 24: Top 5 best shapelets plotted on the reference time series
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Prediction explanations for two random test
instances

Fig. 25: Explanation for
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Conclusion and future direction

What we have done
We introduced the core shapelet recognition task, which is
the hability to recognize any variant of a shapelet from one
or few number of its variants
We proposed SAST, which effectively performs the core
shapelet recognition task
We shown using 72 state of the art datasets that SAST is
accurate, interpretable and much more scalable

Future directions
Identify and remove duplicate subsequence from SAST
Use SAST as a remplacement of STC module in
HIVE-COTE
Apply the core shapelet recognition task in TS-CHIEF
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