# Robust Domain Adaptation: Representations, Weights and Inductive Bias



June 13, 2021

#### **Domain Adaptation**



#### Setup

- Source labelled samples:  $(x_S^i, y_S^i)_i \sim p_S(X, Y)$
- Target unlabelled samples:  $(x_T^j)_j \sim p_T(X)$
- Objective: Learning h ∈ H s.t.: h ∈ arg min<sub>h∈H</sub> ε<sub>T</sub>(h)

### **Covariate Shift**

## Covariate Shift

Labelling functions are conserved:

$$p_{S}(y|x) = p_{T}(y|x) \tag{1}$$

### **Covariate Shift**

#### **Covariate Shift** Labelling functions are conserved:

$$p_{S}(y|x) = p_{T}(y|x) \tag{1}$$

$$\varepsilon_{T}(h) = \mathbb{E}_{T}[\ell(h(x), y)] = \mathbb{E}_{S}\left[\frac{p_{T}(x)}{p_{S}(x)}\ell(h(x), y)\right]$$
(2)

### **Covariate Shift**

#### **Covariate Shift** Labelling functions are conserved:

$$p_{S}(y|x) = p_{T}(y|x) \tag{1}$$

$$\varepsilon_{T}(h) = \mathbb{E}_{T}[\ell(h(x), y)] = \mathbb{E}_{S}\left[\frac{p_{T}(x)}{p_{S}(x)}\ell(h(x), y)\right]$$
(2)

Needs overlapping supports!









Deep net

























$$\varepsilon_{\mathcal{T}}(g\varphi) \leq \underbrace{\varepsilon_{\mathcal{S}}(g\varphi) + d_{\mathcal{G}}(\varphi)}_{\text{Controllable}} + \underbrace{\lambda_{\mathcal{G}}(\varphi)}_{\text{Not controllable}}$$
(3)

An unexpected trade-off

Let  $\psi$  be a representation which is a richer feature extractor than  $\varphi$ :

 $\mathcal{G}\circ \varphi \subset \mathcal{G}\circ \psi$ 

$$\varepsilon_{\mathcal{T}}(g\varphi) \leq \underbrace{\varepsilon_{\mathcal{S}}(g\varphi) + d_{\mathcal{G}}(\varphi)}_{\text{Controllable}} + \underbrace{\lambda_{\mathcal{G}}(\varphi)}_{\text{Not controllable}}$$
(3)

An unexpected trade-off

Let  $\psi$  be a representation which is a richer feature extractor than  $\varphi$ :

 $\mathcal{G} \circ \varphi \subset \mathcal{G} \circ \psi$ 

Then,

$$d_{\mathcal{G}}(\varphi) \le d_{\mathcal{G}}(\psi)$$
 while  $\lambda_{\mathcal{G}}(\psi) \le \lambda_{\mathcal{G}}(\varphi)$  (4)

$$\varepsilon_{\mathcal{T}}(g\varphi) \leq \underbrace{\varepsilon_{\mathcal{S}}(g\varphi) + d_{\mathcal{G}}(\varphi)}_{\text{Controllable}} + \underbrace{\lambda_{\mathcal{G}}(\varphi)}_{\text{Not controllable}} (3)$$

An unexpected trade-off

Let  $\psi$  be a representation which is a richer feature extractor than  $\varphi$ :

 $\mathcal{G} \circ \varphi \subset \mathcal{G} \circ \psi$ 

Then,

$$d_{\mathcal{G}}(\varphi) \leq d_{\mathcal{G}}(\psi) \text{ while } \lambda_{\mathcal{G}}(\psi) \leq \lambda_{\mathcal{G}}(\varphi)$$
 (4)

▷ The benefit of representation invariance must be higher than the loss of adaptability, which is impossible to guarantee in practice.

$$\varepsilon_{\mathcal{T}}(g\varphi) \leq \underbrace{\varepsilon_{\mathcal{S}}(g\varphi) + d_{\mathcal{G}}(\varphi)}_{\text{Controllable}} + \underbrace{\lambda_{\mathcal{G}}(\varphi)}_{\text{Not controllable}} (3)$$

An unexpected trade-off

Let  $\psi$  be a representation which is a richer feature extractor than  $\varphi$ :

 $\mathcal{G} \circ \varphi \subset \mathcal{G} \circ \psi$ 

Then,

$$d_{\mathcal{G}}(\varphi) \leq d_{\mathcal{G}}(\psi) \text{ while } \lambda_{\mathcal{G}}(\psi) \leq \lambda_{\mathcal{G}}(\varphi)$$
 (4)

▷ The benefit of representation invariance must be higher than the loss of adaptability, which is impossible to guarantee in practice.

Invariance is conflicting with label shift [Zhao et al., ICML2019]  $\lambda_{\mathcal{G}}(\varphi) \ge \frac{1}{2} \left( JS(Y) - JS(Z) \right)^2$ (5)

If  $\mathrm{JS}(Z) o 0$ ,  $\lambda_\mathcal{G}(arphi)$  can not be small if  $\mathrm{JS}(Y)$  is high...

- 1. A new trade-off between invariance and transferability
  - Introduce a new error term named transferability error
  - Reconcile Invariant Representations and Weights

- 1. A new trade-off between invariance and transferability
  - Introduce a new error term named transferability error
  - Reconcile Invariant Representations and Weights
- 2. Role of Inductive Bias:
  - Weights ▷ induce new property of invariance of representations and the labelling function
  - Classifier ▷ Feedback for better representations invariance.

- 1. A new trade-off between invariance and transferability
  - Introduce a new error term named transferability error
  - Reconcile Invariant Representations and Weights
- 2. Role of Inductive Bias:
  - Weights ▷ induce new property of invariance of representations and the labelling function
  - Classifier ▷ Feedback for better representations invariance.
- 3. A new algorithm for Robust Unsupervised Domain Adaptation ▷ RUDA
  - Robust to strong label shift
  - Evaluation on two benchmarks

1. INV  $\triangleright$  captures the difference between source and target distribution of representations.

- 1. INV  $\triangleright$  captures the difference between source and target distribution of representations.
- TSF ▷ catches if the coupling between representations and labels shifts across domains.

- 1. INV  $\triangleright$  captures the difference between source and target distribution of representations.
- TSF ▷ catches if the coupling between representations and labels shifts across domains.
- 3. Reconcile Weights and Invariant Representations.










$$TSF(\varphi) := \sup_{f \in \mathcal{F}_{c}} \mathbb{E}_{S}[Y \cdot f(Z)] - \mathbb{E}_{T}[Y \cdot f(Z)]$$

$$TSF(\varphi) := \sup_{f \in \mathcal{F}_{c}} \mathbb{E}_{S}[Y \cdot f(Z)] - \mathbb{E}_{T}[Y \cdot f(Z)]$$

$$True = 1$$

$$Tru$$





















$$\mathbb{NV}(w,\varphi) := \sup_{f \in \mathcal{F}} \mathbb{E}_{\mathcal{S}}[w(Z)f(Z)] - \mathbb{E}_{\mathcal{T}}[f(Z)]$$











 $\varepsilon_{T}(g\varphi) \leq \varepsilon_{w \cdot S}(g\varphi) + 6 \cdot \text{INV}(w,\varphi) + 2 \cdot \text{TSF}(w,\varphi) + \varepsilon_{T}(\mathbf{f}_{T}\varphi)$  (6)

$$\varepsilon_{\mathcal{T}}(g\varphi) \le \varepsilon_{w \cdot S}(g\varphi) + 6 \cdot \mathrm{INV}(w,\varphi) + 2 \cdot \mathrm{TSF}(w,\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \quad (6)$$

Weighting the source domain

$$\varepsilon_{\mathbf{w}\cdot\mathbf{S}}(g\varphi) := \mathbb{E}_{\mathbf{S}}[w(Z)\ell(g(Z),Y)] \tag{7}$$

A new trade-off

$$\varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) := \inf_{\mathbf{f}\in\mathcal{F}_c}\varepsilon_{\mathcal{T}}(\mathbf{f}\varphi) \tag{8}$$

$$\varepsilon_{\mathcal{T}}(g\varphi) \le \varepsilon_{w\cdot S}(g\varphi) + 6 \cdot \mathrm{INV}(w,\varphi) + 2 \cdot \mathrm{TSF}(w,\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \quad (6)$$

#### Weighting the source domain

$$\varepsilon_{\mathbf{w}\cdot\mathbf{S}}(g\varphi) := \mathbb{E}_{\mathbf{S}}[w(Z)\ell(g(Z),Y)] \tag{7}$$

#### A new trade-off

$$\varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) := \inf_{\mathbf{f}\in\mathcal{F}_c}\varepsilon_{\mathcal{T}}(\mathbf{f}\varphi) \tag{8}$$

**Tightness**  
INV
$$(w, \varphi) = 0$$
 and TSF $(w, \varphi) = 0$ , then,  
 $\implies p_T(y|z) = p_S(y|z)$  and  $w(z) = \frac{p_T(z)}{p_S(z)}$ 

▷ Much smaller than the adaptability.

### $\varepsilon_{\mathcal{T}}(g\varphi) \le \varepsilon_{w \cdot S}(g\varphi) + 6 \cdot \mathrm{INV}(w,\varphi) + 2 \cdot \mathrm{TSF}(w,\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \quad (9)$

$$\varepsilon_{\mathcal{T}}(g\varphi) \le \varepsilon_{w\cdot 5}(g\varphi) + 6 \cdot \mathrm{INV}(w,\varphi) + 2 \cdot \mathrm{TSF}(w,\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \quad (9)$$

1. Classifier > address the lack of labelled data in the target domain.

$$\mathbf{TSF}(w,\varphi) := \sup_{\mathbf{f}\in\mathcal{F}_c} \mathbb{E}_{\mathbf{S}}[w(Z)Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{\mathbf{T}}[\underbrace{Y}_{\mathbf{77}} \cdot \mathbf{f}(Z)]$$

 Weights ▷ induce invariance property on representations (see the paper for more details).

$$\varepsilon_{\mathcal{T}}(g\varphi) \le \varepsilon_{w\cdot S}(g\varphi) + 6 \cdot \mathrm{INV}(w,\varphi) + 2 \cdot \mathrm{TSF}(w,\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \quad (9)$$

1. Classifier  $\triangleright$  address the lack of labelled data in the target domain.

$$\mathbf{TSF}(w,\varphi) := \sup_{\mathbf{f}\in\mathcal{F}_c} \mathbb{E}_{\mathbf{S}}[w(Z)Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{\mathbf{T}}[\underbrace{Y}_{\mathbf{77}} \cdot \mathbf{f}(Z)]$$

 Weights ▷ induce invariance property on representations (see the paper for more details).

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{S}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{T}[\tilde{g}(Z) \cdot \mathbf{f}(Z)] \tag{10}$$

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{\mathcal{S}}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{\mathcal{T}}[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(10)

#### Insight

The best source classifier is not the best target classifier, and, it is possible to improve the best source classifier, *e.g.*, specific architecture or a well-suited regularization.

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{S}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{T}[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(10)

#### Insight

The best source classifier is not the best target classifier, and, it is possible to improve the best source classifier , *e.g.*, specific architecture or a well-suited regularization.

#### Inductive design

We say that there is an inductive design of a classifier at level  $0 < \beta \leq 1$  if for any representations  $\varphi$ , noting  $g_S = \arg \min_{g \in \mathcal{G}} \varepsilon_S(g\varphi)$ , we can determine  $\tilde{g}$  such that:

$$\varepsilon_{T}(\tilde{g}\varphi) \leq \beta \varepsilon_{T}(g_{S}\varphi) \tag{11}$$

- $\beta$ -strong when  $\beta$  < 1,
- weak when  $\beta = 1$ .

A revisited version of the bound:

 $\varepsilon_{T}(g_{S}\varphi) \leq \varepsilon_{S}(g_{S}\varphi) + 6 \cdot \text{INV}(\varphi) + 2 \cdot \widehat{\text{TSF}}(\varphi, \tilde{g}) + \varepsilon_{T}(\tilde{g}\varphi) + \varepsilon_{T}(\mathbf{f}_{T}\varphi)$  (12)

A revisited version of the bound:

 $\varepsilon_{T}(g_{S}\varphi) \leq \varepsilon_{S}(g_{S}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{T}(\tilde{g}\varphi) + \varepsilon_{T}(\mathbf{f}_{T}\varphi)$  (12)

TSF(φ, ğ) ▷ transferability of representations with respect to the inductive design:

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_S[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_T[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(13)

A revisited version of the bound:

 $\varepsilon_{\mathcal{T}}(g_{\mathcal{S}}\varphi) \leq \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\tilde{g}\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi)$ (12)

TSF(φ, ğ) ▷ transferability of representations with respect to the inductive design:

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{S}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{T}[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(13)

•  $\varepsilon_T(\tilde{g}\varphi) \triangleright$  How good is the inductive design.

### Generalization guarantees with inductive bias

A revisited version of the bound:

 $\varepsilon_{\mathcal{T}}(g_{\mathcal{S}}\varphi) \leq \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\tilde{g}\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi)$ (12)

TSF(φ, ğ) ▷ transferability of representations with respect to the inductive design:

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{\mathcal{S}}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{\mathcal{T}}[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(13)

•  $\varepsilon_{\tau}(\tilde{g}\varphi) \triangleright$  How good is the inductive design.

#### Here comes the guarantees

$$\boxed{\varepsilon_{\mathcal{T}}(g_{\mathcal{S}}\varphi)} \leq \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \beta \boxed{\varepsilon_{\mathcal{T}}(g_{\mathcal{S}}\varphi)} + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi)$$

### Generalization guarantees with inductive bias

A revisited version of the bound:

 $\varepsilon_{\mathcal{T}}(g_{\mathcal{S}}\varphi) \leq \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\tilde{g}\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi)$ (12)

TSF(φ, ğ) ▷ transferability of representations with respect to the inductive design:

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{S}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{T}[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(13)

•  $\varepsilon_{\tau}(\tilde{g}\varphi) \triangleright$  How good is the inductive design.

#### Here comes the guarantees

$$\boxed{\varepsilon_{\mathcal{T}}(g_{\mathcal{S}}\varphi)} \leq \frac{1}{1-\beta} \left( \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$

### Generalization guarantees with inductive bias

A revisited version of the bound:

 $\varepsilon_T(g_S\varphi) \le \varepsilon_S(g_S\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_T(\tilde{g}\varphi) + \varepsilon_T(\mathbf{f}_T\varphi)$  (12)

TSF(φ, ğ) ▷ transferability of representations with respect to the inductive design:

$$\widehat{\mathrm{TSF}}(\varphi, \tilde{g}) := \sup_{\mathbf{f} \in F_C} \mathbb{E}_{S}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{T}[\tilde{g}(Z) \cdot \mathbf{f}(Z)]$$
(13)

•  $\varepsilon_T(\tilde{g}\varphi) \triangleright$  How good is the inductive design.

Here comes the guarantees

$$\varepsilon_{\mathcal{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$

$$\varepsilon_{\mathcal{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$

$$\varepsilon_{\mathcal{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$
$$\varepsilon_{\mathcal{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$

 Target labels are only involved in ε<sub>T</sub>(f<sub>T</sub>φ) which reflects the level of noise when fitting labels from representations ▷ *transferability is now free of target labels.*

$$\varepsilon_{\mathsf{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathsf{S}}(g_{\mathsf{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathsf{T}}(\mathsf{f}_{\mathsf{T}}\varphi) \right)$$

- Target labels are only involved in ε<sub>T</sub>(f<sub>T</sub>φ) which reflects the level of noise when fitting labels from representations ▷ *transferability is now free of target labels.*
- the weaker the inductive bias (eta 
  ightarrow 1), the higher the bound and vice versa.

$$\varepsilon_{\mathcal{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathcal{S}}(g_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{g}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$

- Target labels are only involved in ε<sub>T</sub>(f<sub>T</sub>φ) which reflects the level of noise when fitting labels from representations ▷ *transferability is now free of target labels.*
- the weaker the inductive bias (eta 
  ightarrow 1), the higher the bound and vice versa.
- **Takeaways** ▷ if a regularization is available, it will interacts with the transferability error.

# Robust Unsupervised Domain Adaptation (RUDA)

- Weak inductive design of the classifier:
  - Classifier:  $\tilde{g} \leftarrow g_S \ (\beta = 1)$
  - No theoretical guarantees from inductive classifier.

- Weak inductive design of the classifier:
  - Classifier:  $\tilde{g} \leftarrow g_S \ (\beta = 1)$
  - No theoretical guarantees from inductive classifier.
- Weights controls the invariance error:  $w(z) = \frac{p_T(z)}{p_S(z)}$

- Weak inductive design of the classifier:
  - Classifier:  $\tilde{g} \leftarrow g_S \ (\beta = 1)$
  - No theoretical guarantees from inductive classifier.
- Weights controls the invariance error:  $w(z) = \frac{p_T(z)}{p_S(z)}$
- Bring strong robustness to the adaptation procedure ▷ stress-test on dataset with label strong label shift.

- Weak inductive design of the classifier:
  - Classifier:  $\tilde{g} \leftarrow g_S \ (\beta = 1)$
  - No theoretical guarantees from inductive classifier.
- Weights controls the invariance error:  $w(z) = \frac{p_T(z)}{p_S(z)}$
- Bring strong robustness to the adaptation procedure ▷ stress-test on dataset with label strong label shift.

$$\begin{cases} \varphi^{\star} = \arg\min_{\varphi \in \Phi} \varepsilon_{w(\varphi) \cdot S}(g_{w \cdot S}\varphi) + \lambda \cdot \widehat{\mathrm{TSF}}(w, \varphi, g_{w \cdot S}) \\ \text{such that } w(\varphi) = \arg\min_{w} \mathrm{INV}(w, \varphi) \end{cases}$$

▷ More details about the procedure in the paper.

# Experiments

|         | Method             | $A \rightarrow W$ | $W \rightarrow A$ | A→D            | $D \rightarrow A$ | $D \rightarrow W$ | W→D            | Avg  |
|---------|--------------------|-------------------|-------------------|----------------|-------------------|-------------------|----------------|------|
| dard    | ResNet-50          | $68.4 \pm 0.2$    | $60.7 \pm 0.3$    | $68.9 \pm 0.2$ | $62.5 \pm 0.3$    | $96.7 \pm 0.1$    | $99.3 \pm 0.1$ | 76.1 |
|         | DANN               | $82.0 \pm 0.4$    | $67.4 \pm 0.5$    | $79.7 \pm 0.4$ | $68.2 \pm 0.4$    | 96.9 ±0.2         | $99.1 \pm 0.1$ | 82.2 |
|         | CDAN               | $93.1 \pm 0.2$    | $68.0 \pm 0.4$    | $89.8 \pm 0.3$ | $70.1 \pm 0.4$    | $98.2 \pm 0.2$    | $100. \pm 0.0$ | 86.6 |
| ar      | CDAN+E             | $94.1 \pm 0.1$    | $69.3 \pm 0.4$    | $92.9 \pm 0.2$ | $71.0 \pm 0.3$    | $98.6 \pm 0.1$    | $100. \pm 0.0$ | 87.7 |
| St      | RUDA               | $94.3 \pm 0.3$    | $70.7 \pm 0.3$    | $92.1 \pm 0.3$ | $70.7 \pm 0.1$    | $98.5 \pm 0.1$    | $100. \pm 0.0$ | 87.6 |
|         | RUDA <sub>mi</sub> | $92.0 \pm 0.3$    | $67.9 \pm 0.3$    | $91.1 \pm 0.3$ | $70.2 \pm 0.2$    | $98.6 \pm 0.1$    | $100. \pm 0.0$ | 86.6 |
|         | ResNet-50          | $72.4 \pm 0.7$    | $59.5 \pm 0.1$    | $79.0 \pm 0.1$ | $61.6 \pm 0.3$    | $97.8 \pm 0.1$    | $99.3 \pm 0.1$ | 78.3 |
| 31      | DANN               | $67.5 \pm 0.1$    | $52.1 \pm 0.8$    | $69.7 \pm 0.0$ | $51.5 \pm 0.1$    | $89.9 \pm 0.1$    | $75.9 \pm 0.2$ | 67.8 |
| 2       | CDAN               | $82.5 \pm 0.4$    | $62.9 \pm 0.6$    | $81.4 \pm 0.5$ | $65.5 \pm 0.5$    | $98.5 \pm 0.3$    | $99.8 \pm 0.0$ | 81.6 |
| 5 × [16 | RUDA               | $85.4 \pm 0.8$    | $66.7 \pm 0.5$    | $81.3 \pm 0.3$ | $64.0 \pm 0.5$    | $98.4 \pm 0.2$    | $99.5 \pm 0.1$ | 82.1 |
|         | IWAN               | $72.4 \pm 0.4$    | $54.8 \pm 0.8$    | $75.0 \pm 0.3$ | $54.8 \pm 1.3$    | 97.0 ±0.0         | 95.8 ±0.6      | 75.0 |
|         | CDAN <sub>m</sub>  | $81.5 \pm 0.5$    | $64.5 \pm 0.4$    | $80.7 \pm 1.0$ | $65 \pm 0.8$      | $98.7 \pm 0.2$    | $99.9 \pm 0.1$ | 81.8 |
|         | RUDAw              | $87.4 \pm 0.2$    | $68.3 \pm 0.3$    | 82.9 ± 0.4     | $68.8 \pm 0.2$    | $98.7 \pm 0.1$    | $100. \pm 0.0$ | 83.8 |

Table 1: Accuracy (%) on the Office-31 dataset.

### RUDA performs similarly than SOTA approaches

Table 2: Accuracy (%) on the **Digits** dataset.

| Method                | $U \rightarrow M$ |            |        | M→U   |      |      |      |      |      |      |      |
|-----------------------|-------------------|------------|--------|-------|------|------|------|------|------|------|------|
| Shift of $[0 \sim 5]$ | 5% 10% 1          | 15% 20%    | 100%   | lvg   | 5%   | 10%  | 15%  | 20%  | 100% | Avg  | Avg  |
| DANN                  | 41.7 51.0 1       | 59.6 69.0  | 94.5 6 | 3.2   | 34.5 | 51.0 | 59.6 | 63.6 | 90.7 | 59.9 | 63.2 |
| CDAN                  | 50.7 62.2 8       | \$2.9 82.8 | 96.9 7 | 5.1   | 32.0 | 69.7 | 78.9 | 81.3 | 93.9 | 71.2 | 73.2 |
| RUDA                  | 44.4 58.4 8       | 80.0 84.0  | 95.5 7 | 2.5   | 34.9 | 59.0 | 76.1 | 78.8 | 93.3 | 68.4 | 70.5 |
| IWAN                  | 73.7 74.4 1       | 78.4 77.5  | 95.7 7 | 9.9   | 72.2 | 82.0 | 84.3 | 86.0 | 92.0 | 83.3 | 81.6 |
| CDANw                 | 68.3 78.8 8       | 84.9 88.4  | 96.6 8 | \$3.4 | 69.4 | 80.0 | 83.5 | 87.8 | 93.7 | 82.9 | 83.2 |
| RUDAw                 | 78.7 82.8 8       | 86.0 86.9  | 93.9 8 | 5.7   | 78.7 | 87.9 | 88.2 | 89.3 | 92.5 | 87.3 | 86.5 |

|       | Method             | $A \rightarrow W$ | $W \rightarrow A$ | A→D            | $D \rightarrow A$ | $D \rightarrow W$ | W→D            | Avg  |
|-------|--------------------|-------------------|-------------------|----------------|-------------------|-------------------|----------------|------|
| Annel | ResNet-50          | $68.4 \pm 0.2$    | $60.7 \pm 0.3$    | $68.9 \pm 0.2$ | $62.5 \pm 0.3$    | $96.7 \pm 0.1$    | $99.3 \pm 0.1$ | 76.1 |
| p     | DANN               | $82.0 \pm 0.4$    | $67.4 \pm 0.5$    | $79.7 \pm 0.4$ | $68.2 \pm 0.4$    | 96.9 ±0.2         | $99.1 \pm 0.1$ | 82.2 |
| da    | CDAN               | $93.1 \pm 0.2$    | $68.0 \pm 0.4$    | $89.8 \pm 0.3$ | $70.1 \pm 0.4$    | $98.2 \pm 0.2$    | $100. \pm 0.0$ | 86.6 |
| 80    | CDAN+E             | $94.1 \pm 0.1$    | $69.3 \pm 0.4$    | $92.9 \pm 0.2$ | $71.0 \pm 0.3$    | $98.6 \pm 0.1$    | $100. \pm 0.0$ | 87.7 |
| St    | RUDA               | $94.3 \pm 0.3$    | $70.7 \pm 0.3$    | $92.1 \pm 0.3$ | $70.7 \pm 0.1$    | $98.5 \pm 0.1$    | $100. \pm 0.0$ | 87.6 |
|       | RUDA <sub>ui</sub> | $92.0 \pm 0.3$    | $67.9 \pm 0.3$    | $91.1 \pm 0.3$ | $70.2 \pm 0.2$    | $98.6 \pm 0.1$    | $100. \pm 0.0$ | 86.6 |
|       | ResNet-50          | $72.4 \pm 0.7$    | $59.5 \pm 0.1$    | $79.0 \pm 0.1$ | $61.6 \pm 0.3$    | $97.8 \pm 0.1$    | $99.3 \pm 0.1$ | 78.3 |
| 31    | DANN               | $67.5 \pm 0.1$    | $52.1 \pm 0.8$    | $69.7 \pm 0.0$ | $51.5 \pm 0.1$    | $89.9 \pm 0.1$    | 75.9 ±0.2      | 67.8 |
| 2     | CDAN               | $82.5 \pm 0.4$    | $62.9 \pm 0.6$    | $81.4 \pm 0.5$ | $65.5 \pm 0.5$    | $98.5\pm0.3$      | $99.8 \pm 0.0$ | 81.6 |
| 9     | RUDA               | $85.4 \pm 0.8$    | $66.7 \pm 0.5$    | $81.3 \pm 0.3$ | $64.0 \pm 0.5$    | $98.4 \pm 0.2$    | $99.5 \pm 0.1$ | 82.1 |
|       | IWAN               | $72.4 \pm 0.4$    | $54.8 \pm 0.8$    | $75.0 \pm 0.3$ | $54.8 \pm 1.3$    | $97.0 \pm 0.0$    | $95.8 \pm 0.6$ | 75.0 |
| ×     | CDAN <sub>m</sub>  | $81.5 \pm 0.5$    | $64.5 \pm 0.4$    | $80.7 \pm 1.0$ | $65 \pm 0.8$      | $98.7 \pm 0.2$    | $99.9 \pm 0.1$ | 81.8 |
| 817   | RUDAw              | $87.4 \pm 0.2$    | $68.3 \pm 0.3$    | $82.9 \pm 0.4$ | $68.8 \pm 0.2$    | $98.7 \pm 0.1$    | $100. \pm 0.0$ | 83.8 |

Table 1: Accuracy (%) on the Office-31 dataset.



Table 2: Accuracy (%) on the Digits dataset.

| Method                | $U \rightarrow M$             | M→U                           |      |
|-----------------------|-------------------------------|-------------------------------|------|
| Shift of $[0 \sim 5]$ | 5% 10% 15% 20% 100% Avg       | 5% 10% 15% 20% 100% Avg       | Avg  |
| DANN                  | 41.7 51.0 59.6 69.0 94.5 63.2 | 34.5 51.0 59.6 63.6 90.7 59.9 | 63.2 |
| CDAN                  | 50.7 62.2 82.9 82.8 96.9 75.1 | 32.0 69.7 78.9 81.3 93.9 71.2 | 73.2 |
| RUDA                  | 44.4 58.4 80.0 84.0 95.5 72.5 | 34.9 59.0 76 1 78.8 93.3 68.4 | 70.5 |
| IWAN                  | 73.7 74.4 78.4 77.5 95.7 79.9 | 72.2 82.0 84.3 86.0 92.0 83.3 | 81.6 |
| CDANw                 | 68.3 78.8 84.9 88.4 96.6 83.4 | 69.4 80.0 83.5 87.8 93.7 82.9 | 83.2 |
| RUDAw                 | 78.7 82.8 86.0 86.9 93.9 85.7 | 78.7 87.9 88.2 89.3 92.5 87.3 | 86.5 |

## Conclusion

1. New bound of the target risk which unifies weights and representations in UDA.

 $\varepsilon_{\mathcal{T}}(g\varphi) \leq \varepsilon_{w \cdot S}(g\varphi) + 6 \cdot \mathrm{INV}(w,\varphi) + 2 \cdot \mathrm{TSF}(w,\varphi) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi)$ 

- 1. New bound of the target risk which unifies weights and representations in UDA.
- 2. Theoretical analysis of the role of inductive bias when designing both weights and the classifier.

$$\varepsilon_{\mathcal{T}}(\tilde{\mathbf{g}}\varphi) \leq \frac{\beta}{1-\beta} \left( \varepsilon_{\mathcal{S}}(\mathbf{g}_{\mathcal{S}}\varphi) + 6 \cdot \mathrm{INV}(\varphi) + 2 \cdot \widehat{\mathrm{TSF}}(\varphi, \tilde{\mathbf{g}}) + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \right)$$

## Conclusion

- 1. New bound of the target risk which unifies weights and representations in UDA.
- 2. Theoretical analysis of the role of inductive bias when designing both weights and the classifier.
- 3. New learning procedure ▷ weak inductive bias can make adaptation more robust even when stressed by strong label shift between source and target domains.

$$\begin{cases} \varphi^{\star} = \arg\min_{\varphi \in \Phi} \varepsilon_{w(\varphi) \cdot S}(g_{w \cdot S}\varphi) + \lambda \cdot \widehat{\mathrm{TSF}}(w, \varphi, g_{w \cdot S}) \\ \text{such that } w(\varphi) = \arg\min_{w} \mathrm{INV}(w, \varphi) \end{cases}$$

- 1. New bound of the target risk which unifies weights and representations in UDA.
- 2. Theoretical analysis of the role of inductive bias when designing both weights and the classifier.
- 3. New learning procedure ▷ weak inductive bias can make adaptation more robust even when stressed by strong label shift between source and target domains.

This work leaves room for in-depth study of stronger inductive bias by providing both theoretical and empirical foundations.

# Thank you!

$$\varepsilon_{\mathcal{T}}(g\varphi) \leq \underbrace{\varepsilon_{\mathcal{S}}(g\varphi) + d_{\mathcal{G}}(\varphi)}_{\text{Controllable}} + \underbrace{\lambda_{\mathcal{G}}(\varphi)}_{\text{Not controllable}}$$
 (14)

An unexpected trade-off Let  $\psi$  be a representation which is a richer feature extractor than  $\varphi$ :  $\mathcal{G} \circ \varphi \subset \mathcal{G} \circ \psi$ . Then,

$$d_{\mathcal{G}}(\varphi) \le d_{\mathcal{G}}(\psi)$$
 while  $\lambda_{\mathcal{G}}(\psi) \le \lambda_{\mathcal{G}}(\varphi)$  (15)

Invariance is conflicting with label shift [Zhao et al., ICML2019]  $\lambda_{\mathcal{G}}(\varphi) \geq \frac{1}{2} \left( JS(Y) - JS(Z) \right)^2$ (16)

If  $JS(Z) \to 0$ ,  $\lambda_{\mathcal{G}}(\varphi)$  can not be small if JS(Y) is high...  $\triangleright$  We should weight the source distributions! But how...

- how to design weights?
- how weights interact with invariance?
- why predictions are important in UDA?

 $\triangleright$  emerges from the sup / inf duality computed on a small hypothesis class  $\mathcal{G}\circ\varphi.$ 

Our strategy Express both invariance and transferability of representations as supremum over a large space of critic functions > See the paper for details about property of the critic functions

### 2 critic functions space

- $\mathcal{F} \triangleright$  'large' function space from  $\mathcal{Z}$  to [-1,1]
- $\mathcal{F}_{\mathcal{C}} \triangleright$  'large' function space from  $\mathcal{Z}$  to  $[-1,1]^{\mathcal{C}}$
- > Typically continuous functions.

### 2 critic functions space

- $\mathcal{F} \triangleright$  'large' function space from  $\mathcal{Z}$  to [-1,1]
- $\mathcal{F}_{\mathcal{C}} \triangleright$  'large' function space from  $\mathcal{Z}$  to  $[-1,1]^{\mathcal{C}}$
- > Typically continuous functions.

### 2 errors

 captures the difference between source and target distribution of representations:

$$INV(\varphi) := \sup_{f \in \mathcal{F}} \mathbb{E}_{\mathcal{S}}[f(Z)] - \mathbb{E}_{\mathcal{T}}[f(Z)]$$
(17)

• catches if the coupling between Z and Y shifts across domains:

$$\operatorname{TSF}(\varphi) := \sup_{\mathbf{f} \in \mathcal{F}_c} \mathbb{E}_{\mathcal{S}}[Y \cdot \mathbf{f}(Z)] - \mathbb{E}_{\mathcal{T}}[Y \cdot \mathbf{f}(Z)]$$
(18)

### Why designing weights?

Prediction weighting [Partial Adversarial Domain Adaptation, Cao et al. 2018] ▷ Estimated labels are used to re-weight the source domain:

$$w(x) = \frac{p_T(g(z))}{p_S(g(z))}$$

 Entropy conditioning [Conditional Adversarial Domain Adaptation, Long et al. 2018] ▷ Transfer only confident samples:

 $w(x) \propto 1 + e^{-H(g(z))}$  where H is the entropy.

### Inductive design of weights

It exists a function  $\psi : \mathcal{Z} \to \mathcal{Z}'$ ,  $\psi(z) =: z'$  s.t. w is a function of Z'.

Weights enforces new invariance If the bound is tight, then,

$$w(z') = \frac{p_T(z')}{p_S(z')}$$
 and  $p_S(z|z') = p_T(z|z')$  (19)

21



### **Detailed view of RUDA**

$$\varepsilon_{\mathcal{T}}(\tilde{g}\varphi) \leq \frac{\beta}{1-\beta} \{\varepsilon_{w} \cdot s(g_{w} \cdot s\varphi) \\ + 6 \cdot INV(w,\varphi) \triangleright \text{ Set weight s.t. } INV(w,\varphi) = 0 \\ + 2 \cdot \widehat{\mathrm{TSF}}(w,\varphi,\tilde{g}) \triangleright \text{ Set inductive classifier s.t. } \tilde{g} = g \\ + \varepsilon_{\mathcal{T}}(\mathbf{f}_{\mathcal{T}}\varphi) \}$$

• Set weight s.t.  $INV(w, \varphi) = 0$ :

$$w(z) := \frac{p_T(z)}{p_S(z)} = \frac{1 - d(z)}{d(z)}$$
(20)

where d is a domain classifier (trained to map 1 in the source domain and 0 in the target domain.)

Set inductive classifier s.t. ğ = g: β = 1
 "This is a weak inductive design (β = 1), thus, theoretical guarantee from bound 4 is not applicable. However, there is empirical evidence that showed that predicted labels help in UDA"

## **Detailed view of RUDA**

$$\begin{cases} \theta_{\varphi}^{\star} = \arg \min_{\theta_{\varphi}} \mathcal{L}_{c}(\theta_{g}, \theta_{\varphi} | \theta_{d}) + \lambda \cdot \mathcal{L}_{\widehat{\text{TSF}}}(\theta_{\varphi}, \theta_{d} | \theta_{d}, \theta_{g}) \\ \\ \theta_{g} = \arg \min_{\theta_{g}} \mathcal{L}_{c}(\theta_{g}, \theta_{\varphi} | \theta_{d}) \\ \\ \theta_{d} = \arg \min_{\theta_{d}} \mathcal{L}_{\text{INV}}(\theta_{d} | \theta_{\varphi}) \end{cases}$$
(21)

$$\begin{cases} \varphi^{\star} = \arg\min_{\varphi \in \Phi} \varepsilon_{w(\varphi) \cdot S}(g_{w \cdot S}\varphi) + \lambda \cdot \widehat{\mathrm{TSF}}(w, \varphi, g_{w \cdot S}) \\ \text{such that } w(\varphi) = \arg\min_{w} \mathrm{INV}(w, \varphi) \end{cases}$$
(RUDA)

### Detailed view of RUDA

