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Domain Adaptation

SOURCE  
Labelled samples

TARGET  
Unlabelled samples

Setup

• Source labelled samples: (x i
S , y i

S)i ∼ pS(X ,Y )
• Target unlabelled samples: (x j

T )j ∼ pT (X )
• Objective: Learning h ∈ H s.t.: h ∈ arg minh∈H εT (h) 1



Covariate Shift

Covariate Shift
Labelling functions are conserved:

pS(y |x) = pT (y |x) (1)

εT (h) = ET [ℓ(h(x), y)] = ES

[
pT (x)
pS(x) ℓ(h(x), y)

]
(2)

Needs overlapping supports!

pT (x)pS(x)
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Domain Invariant Representations [Ben-David et al., Ganin et al.]
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Domain Invariant Representations: Limits

εT (gφ) ≤ εS(gφ) + dG(φ)︸ ︷︷ ︸
Controllable

+ λG(φ)︸ ︷︷ ︸
Not controllable

(3)

An unexpected trade-off
Let ψ be a representation which is a richer feature extractor than φ:

G ◦ φ ⊂ G ◦ ψ

Then,
dG(φ) ≤ dG(ψ) while λG(ψ) ≤ λG(φ) (4)

▷ The benefit of representation invariance must be higher than the loss of
adaptability, which is impossible to guarantee in practice.
Invariance is conflicting with label shift [Zhao et al., ICML2019]

λG(φ) ≥ 1
2 (JS(Y ) − JS(Z ))2 (5)

If JS(Z ) → 0, λG(φ) can not be small if JS(Y ) is high...

4
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1. A new trade-off between invariance and transferability

• Introduce a new error term named transferability error
• Reconcile Invariant Representations and Weights

2. Role of Inductive Bias:
• Weights ▷ induce new property of invariance of representations and

the labelling function
• Classifier ▷ Feedback for better representations invariance.

3. A new algorithm for Robust Unsupervised Domain Adaptation ▷
RUDA

• Robust to strong label shift
• Evaluation on two benchmarks
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A new trade-off between
invariance and transferability



Three ingredients

1. INV ▷ captures the difference between source and target distribution
of representations.

2. TSF ▷ catches if the coupling between representations and labels
shifts across domains.

3. Reconcile Weights and Invariant Representations.
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Reconciling Weights and Invariant Representations

εT (gφ) ≤ εw ·S(gφ) + 6 · INV(w , φ) + 2 · TSF(w , φ) + εT (fTφ) (6)

Weighting the source domain
εw ·S(gφ) := ES [w(Z )ℓ(g(Z ),Y )] (7)

A new trade-off
εT (fTφ) := inf

f∈Fc
εT (fφ) (8)

Tightness
INV(w , φ) = 0 and TSF(w , φ) = 0, then,

=⇒ pT (y |z) = pS(y |z) and w(z) = pT (z)
pS(z)

▷ Much smaller than the adaptability.

9
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Remaining challenges

εT (gφ) ≤ εw ·S(gφ) + 6 · INV(w , φ) + 2 · TSF(w , φ) + εT (fTφ) (9)

1. Classifier ▷ address the lack of labelled data in the target domain.

TSF(w , φ) := sup
f∈Fc

ES [w(Z )Y · f(Z )] − ET [ Y︸︷︷︸
??

·f(Z )]
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Inductive design of the classifier

T̂SF(φ, g̃) := sup
f∈FC

ES [Y · f(Z )] − ET [g̃(Z ) · f(Z )] (10)

Insight
The best source classifier is not the best target classifier, and, it is
possible to improve the best source classifier , e.g., specific architecture
or a well-suited regularization.

Inductive design
We say that there is an inductive design of a classifier at level 0 < β ≤ 1
if for any representations φ, noting gS = arg ming∈G εS(gφ), we can
determine g̃ such that:

εT (g̃φ) ≤ βεT (gSφ) (11)

• β−strong when β < 1,
• weak when β = 1.

11
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Generalization guarantees with inductive bias

A revisited version of the bound:

εT (gSφ) ≤ εS(gSφ)+6·INV(φ)+2·T̂SF(φ, g̃)+εT (g̃φ)+εT (fTφ) (12)

• T̂SF(φ, g̃) ▷ transferability of representations with respect to the
inductive design:

T̂SF(φ, g̃) := sup
f∈FC

ES [Y · f(Z )] − ET [g̃(Z ) · f(Z )] (13)

• εT (g̃φ) ▷ How good is the inductive design.

Here comes the guarantees
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Generalization guarantees with inductive bias

εT (g̃φ) ≤ β

1 − β

(
εS(gSφ) + 6 · INV(φ) + 2 · T̂SF(φ, g̃) + εT (fTφ)

)

• Target labels are only involved in εT (fTφ) which reflects the level of
noise when fitting labels from representations ▷ transferability is now
free of target labels.

• the weaker the inductive bias (β → 1), the higher the bound and
vice versa.

• Takeaways ▷ if a regularization is available, it will interacts with the
transferability error.
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Robust Unsupervised Domain
Adaptation (RUDA)



Assumptions

• Weak inductive design of the classifier:
• Classifier: g̃ ← gS (β = 1)
• No theoretical guarantees from inductive classifier.

• Weights controls the invariance error: w(z) = pT (z)
pS (z)

• Bring strong robustness to the adaptation procedure ▷ stress-test on
dataset with label strong label shift.

 φ⋆ = arg min
φ∈Φ

εw(φ)·S(gw ·Sφ) + λ · T̂SF(w , φ, gw ·S)

such that w(φ) = arg min
w

INV(w , φ)

▷ More details about the procedure in the paper.
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Experiments



Experiments

RUDA performs similarly than SOTA approaches
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Experiments

RUDA still performs well even  
when stress with strong label shift
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Conclusion



Conclusion

1. New bound of the target risk which unifies weights and
representations in UDA.

εT (gφ) ≤ εw·S(gφ) + 6 · INV(w , φ) + 2 · TSF(w , φ) + εT (fT φ)

2. Theoretical analysis of the role of inductive bias when designing
both weights and the classifier.

3. New learning procedure ▷ weak inductive bias can make adaptation
more robust even when stressed by strong label shift between source
and target domains.

This work leaves room for in-depth study of stronger inductive bias by
providing both theoretical and empirical foundations.
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Thank you!
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Motivations

εT (gφ) ≤ εS(gφ) + dG(φ)︸ ︷︷ ︸
Controllable

+ λG(φ)︸ ︷︷ ︸
Not controllable

(14)

An unexpected trade-off
Let ψ be a representation which is a richer feature extractor than φ:
G ◦ φ ⊂ G ◦ ψ. Then,

dG(φ) ≤ dG(ψ) while λG(ψ) ≤ λG(φ) (15)
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Motivations

Invariance is conflicting with label shift [Zhao et al., ICML2019]
λG(φ) ≥ 1

2 (JS(Y ) − JS(Z ))2 (16)

If JS(Z ) → 0, λG(φ) can not be small if JS(Y ) is high... ▷ We should
weight the source distributions! But how...

• how to design weights?
• how weights interact with invariance?
• why predictions are important in UDA?

18



Our strategy

▷ emerges from the sup / inf duality computed on a small hypothesis
class G ◦ φ.

Our strategy
Express both invariance and transferability of representations as
supremum over a large space of critic functions
▷ See the paper for details about property of the critic functions

2 critic functions space

• F ▷ ’large’ function space from Z to [−1, 1]
• FC ▷ ’large’ function space from Z to [−1, 1]C

▷ Typically continuous functions.
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Tools

2 critic functions space

• F ▷ ’large’ function space from Z to [−1, 1]
• FC ▷ ’large’ function space from Z to [−1, 1]C

▷ Typically continuous functions.

2 errors

• captures the difference between source and target distribution of
representations:

INV(φ) := sup
f ∈F

ES [f (Z )] − ET [f (Z )] (17)

• catches if the coupling between Z and Y shifts across domains:

TSF(φ) := sup
f∈Fc

ES [Y · f(Z )] − ET [Y · f(Z )] (18)
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Role of weights

Why designing weights?

• Prediction weighting [Partial Adversarial Domain Adaptation, Cao et
al. 2018] ▷ Estimated labels are used to re-weight the source
domain:

w(x) = pT (g(z))
pS(g(z))

• Entropy conditioning [Conditional Adversarial Domain Adaptation,
Long et al. 2018] ▷ Transfer only confident samples:

w(x) ∝ 1 + e−H(g(z)) where H is the entropy.

Inductive design of weights
It exists a function ψ : Z → Z ′, ψ(z) =: z ′ s.t. w is a function of Z ′.

Weights enforces new invariance
If the bound is tight, then,

w(z ′) = pT (z ′)
pS(z ′) and pS(z |z ′) = pT (z |z ′) (19)

21



Role of weights

Deep net
Deep net

pT (x)

pS(x)

Non-overlapping 

distributions

z := '(x)

z0 :=  (z)

z0

pS(z)

pT (z)

If z0 = g(z)
Inductive bias

pS(z| ) = pT (z| )
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Detailed view of RUDA

εT (g̃φ) ≤ β

1 − β
{εw ·S(gw ·Sφ)

+ 6 · INV(w , φ) ▷ Set weight s.t. INV(w , φ) = 0

+ 2 · T̂SF(w , φ, g̃) ▷ Set inductive classifier s.t. g̃ = g
+ εT (fTφ)}

• Set weight s.t. INV(w , φ) = 0:

w(z) := pT (z)
pS(z) = 1 − d(z)

d(z) (20)

where d is a domain classifier (trained to map 1 in the source
domain and 0 in the target domain.)

• Set inductive classifier s.t. g̃ = g : β = 1
”This is a weak inductive design (β = 1), thus, theoretical guarantee from
bound 4 is not applicable. However, there is empirical evidence that
showed that predicted labels help in UDA” 23



Detailed view of RUDA



θ⋆
φ = arg minθφ Lc(θg , θφ|θd) + λ · LT̂SF(θφ, θd|θd , θg )

θg = arg minθg Lc(θg , θφ|θd)

θd = arg minθd LINV(θd |θφ)

(21)

 φ⋆ = arg min
φ∈Φ

εw(φ)·S(gw ·Sφ) + λ · T̂SF(w , φ, gw ·S)

such that w(φ) = arg min
w

INV(w , φ)
(RUDA)
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Detailed view of RUDA

Deep net

pT (x)

pS(x)

Non-overlapping 

distributions

pS(z)

pT (z)

d(z) 1 0

w(z) :=
1� d(z)

d(z) g(z)

LINV := ES [log(d(z))]
+ET [log(1� d(z))]

L[TSF
:= ES [w(z)Y · log(d(z))] + ET [g(z) · log(1� d(z))]

d(z)

1 0
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