Echantillonnage adaptatif pour l’identification de la politique optimale dans les PDMs

Aymen Al Marjani1

en collaboration avec Alexandre Proutiere2

1UMPA, ENS Lyon

2KTH Royal Institute of Technology

CAp 2021
16 Juin 2021
How many samples does it take to learn an optimal policy in RL?
Infinite horizon MDPs

\[\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle \]
\(\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle \)

1. \(S, A \): Finite state and action spaces.
$\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle$

1. S, A: **Finite** state and action spaces.
2. After choosing action a at state s the agent:
 - receives reward $R(s, a) \sim q_\phi(.|s, a)$
 - and mean $r(s, a) \triangleq \mathbb{E}_{q(.|s,a)}[R(s, a)]$.
 - makes transition to $s' \sim p_\phi(.|s, a)$.

Figure: src:packtpub
Infinite horizon MDPs

\[\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle \]

1. \(S, A \): **Finite** state and action spaces.

2. After choosing action \(a \) at state \(s \) the agent:
 - receives reward \(R(s, a) \sim q_\phi(.|s, a) \) and mean \(r(s, a) \triangleq \mathbb{E}_{q(.|s, a)}[R(s, a)] \).
 - makes transition to \(s' \sim p_\phi(.|s, a) \).
 - For simplicity, we assume \(q \) with support in \([0, 1]\).

Figure: src:packtpub
Best Policy Identification

\[\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle \]

- \(\gamma \in [0, 1) \) is the discount factor.
Best Policy Identification

\[\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle \]

- \(\gamma \in [0, 1) \) is the discount factor.
- Identify a policy \(\pi : S \rightarrow A \) maximizing the total discounted reward:

Assumption 1: \(\pi^* \triangleq \pi^* \phi \) is unique.
Best Policy Identification

\(\phi \leq< S, A, p_\phi, q_\phi, \gamma > \)

- \(\gamma \in [0, 1) \) is the discount factor.
- Identify a policy \(\pi : S \rightarrow A \) maximizing the total discounted reward:

\[\pi^* \in \arg \max \ V_\phi^\pi (s) = \mathbb{E}_\phi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t^\pi, \pi(s_t^\pi)) \bigg| s_0 = s \right] \]
Best Policy Identification

\[\phi = \langle S, A, p_\phi, q_\phi, \gamma \rangle \]

- \(\gamma \in [0, 1) \) is the discount factor.
- Identify a policy \(\pi : S \rightarrow A \) maximizing the total discounted reward:

\[
\pi^*_\phi \in \arg \max_{\pi} V^\pi_\phi(s) = \mathbb{E}_\phi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t^\pi, \pi(s_t^\pi)) \middle| s_0 = s \right]
\]

- **Assumption 1:** \(\pi^* \triangleq \pi^*_\phi \) is unique.
Online model: The agent can only follow trajectories:
\((s_0, a_0, R_0, s_1, a_1 \ldots,)\) where \(s_{t+1} \sim p_{\phi}(\cdot|s_t, a_t)\).
Sampling schemes

- **Online model:** The agent can only follow trajectories:
 \((s_0, a_0, R_0, s_1, a_1 \ldots,)\) where \(s_{t+1} \sim p_\phi(.|s_t, a_t)\).

- **Generative model:** At round \(t\), the agent can sample *any* pair \((s_t, a_t)\). She then observes \((R_t, s'_t) \sim q_\phi(.|s_t, a_t) \otimes p_\phi(.|s_t, a_t)\). Next, she can choose *any* other pair \((s_{t+1}, a_{t+1})\) *independently of her previous state*.
Sampling schemes

- **Online model:** The agent can only follow trajectories:
\[(s_0, a_0, R_0, s_1, a_1 \ldots,) \] where \(s_{t+1} \sim p_{\phi}(\cdot | s_t, a_t) \).

- **Generative model:** At round \(t \), the agent can sample any pair \((s_t, a_t) \). She then observes \((R_t, s'_t) \sim q_{\phi}(\cdot | s_t, a_t) \otimes p_{\phi}(\cdot | s_t, a_t) \). Next, she can choose any other pair \((s_{t+1}, a_{t+1}) \) independently of her previous state.

In this talk, we focus on the **Generative model**.
Sampling rule: How to select next pair to sample depending on past observations: \((s_{t+1}, a_{t+1})\) is \(\mathcal{F}_t \triangleq \sigma((s_j, a_j, R_j, s'_j)_{1 \leq j \leq t})\) measurable.
δ-PC algorithm

- **Sampling rule:** How to select next pair to sample depending on past observations: \((s_{t+1}, a_{t+1})\) is \(\mathcal{F}_t \triangleq \sigma((s_j, a_j, R_j, s'_j)_{1 \leq j \leq t})\) measurable.

- **Stopping rule:** The algorithm stops sampling after collecting \(\tau\) samples and returns \(\hat{\pi}^*\). \(\tau\) is a stopping time w.r.t. the filtration \((\mathcal{F}_t)_{t \geq 1}\).
Sampling rule: How to select next pair to sample depending on past observations: \((s_{t+1}, a_{t+1})\) is \(\mathcal{F}_t \triangleq \sigma((s_j, a_j, R_j, s'_j)_{1 \leq j \leq t})\) measurable.

Stopping rule: The algorithm stops sampling after collecting \(\tau\) samples and returns \(\hat{\pi}^*_\tau\). \(\tau\) is a stopping time w.r.t. the filtration \((\mathcal{F}_t)_{t \geq 1}\).

\(\delta\)-PC algorithm: \(\mathbb{P}_\phi(\hat{\pi}^*_\tau \neq \pi^*) \leq \delta\).
Sampling rule: How to select next pair to sample depending on past observations: \((s_{t+1}, a_{t+1})\) is \(\mathcal{F}_t \triangleq \sigma \left((s_j, a_j, R_j, s'_j)_{1 \leq j \leq t} \right)\) measurable.

Stopping rule: The algorithm stops sampling after collecting \(\tau\) samples and returns \(\hat{\pi}^\tau\). \(\tau\) is a stopping time w.r.t. the filtration \((\mathcal{F}_t)_{t \geq 1}\).

\(\delta\)-PC algorithm: \(\mathbb{P}_\phi(\hat{\pi}^\tau \neq \pi^*) \leq \delta\).

Identify \(\pi^*\) **as fast as possible!**
Sampling rule: How to select next pair to sample depending on past observations: \((s_{t+1}, a_{t+1})\) is \(\mathcal{F}_t \triangleq \sigma((s_j, a_j, R_j, s'_j)_{1 \leq j \leq t})\) measurable.

Stopping rule: The algorithm stops sampling after collecting \(\tau\) samples and returns \(\hat{\pi}_\tau^*\). \(\tau\) is a stopping time w.r.t. the filtration \((\mathcal{F}_t)_{t \geq 1}\).

\(\delta\)-PC algorithm: \(\mathbb{P}_\phi(\hat{\pi}_\tau^* \neq \pi^*) \leq \delta\).

Identify \(\pi^*\) as fast as possible!

\[\implies \text{Algorithm with minimal sample complexity } \mathbb{E}[\tau_\delta]\]
Learning: be specific!

Two kinds of guarantees:
Two kinds of guarantees:

- **Minimax** over a set of MDPs Φ:

$$\inf_{A: \delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi, A}[\tau_\delta]$$

Minimax lower bounds often come from pathological examples. Real-world scenarios are not that hard (unless in adversarial settings). Algorithms that sample state-actions uniformly at random are sufficient to be minimax optimal!
Two kinds of guarantees:

- **Minimax** over a set of MDPs Φ:

$$\inf_{A: \delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi, A}[\tau_{\delta}]$$

- Minimax lower bounds often come from pathological examples. Real world scenarios are not that hard (unless in adversarial settings).
Two kinds of guarantees:

- **Minimax** over a set of MDPs Φ:

$$\inf_{A: \delta \text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi, A}[\tau_\delta]$$

- Minimax lower bounds often come from pathological examples. Real world scenarios are not that hard (unless in adversarial settings).
- Algorithms that sample state-actions uniformly at random are sufficient to be minimax optimal!
Two kinds of guarantees:

- **Minimax** over a set of MDPs Φ:

\[
\inf_{A: \delta-PC} \sup_{\phi \in \Phi} \mathbb{E}_{\phi, A}[\tau_\delta]
\]

- **Instance-specific**: For a given ϕ:

\[
\inf_{A: \delta-PC} \mathbb{E}_{\phi, A}[\tau_\delta]
\]
Two kinds of guarantees:

- **Minimax** over a set of MDPs Φ:
 \[
 \inf_{A: \delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,A}[\tau_\delta]
 \]

- **Instance-specific**: For a given ϕ:
 \[
 \inf_{A: \delta\text{-PC}} \mathbb{E}_{\phi,A}[\tau_\delta]
 \]
Two kinds of guarantees:

- **Minimax** over a set of MDPs Φ:
 \[
 \inf_{A:\delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,A}[\tau_\delta]
 \]

- **Instance-specific**: For a given ϕ:
 \[
 \inf_{A:\delta\text{-PC}} \mathbb{E}_{\phi,A}[\tau_\delta]
 \]

- We seek algorithms that can adapt to the hardness of the instance.
Information-Theoretical lower bound

Define: The set of alternative MDPs $\text{Alt}(\phi) = \{\psi: \pi^{\star} \text{ is not optimal in } \psi\}$.

Let Σ the simplex of \mathbb{R}^{SA}.

$$\text{KL}(\phi | \psi)(s, a) = \text{KL}(q_{\phi}(s, a), q_{\psi}(s, a)) + \text{KL}(p_{\phi}(s, a), p_{\psi}(s, a))$$

Proposition 1: The sample complexity of any δ-PC algorithm satisfies: for any ϕ with a unique optimal policy, $E_{\phi}[\tau_{\delta}] \geq T^{\star}(\phi) \log \left(\frac{1}{2.4 \delta}\right)$, where $T^{\star}(\phi) - 1 = \sup_{\omega \in \Sigma} \inf_{\psi \in \text{Alt}(\phi)} \sum_{s, a \omega} q_{\omega}(s, a)$.
Define:

- The set of alternative MDPs $\text{Alt}(\phi) = \{\psi : \pi^* \text{ is not optimal in } \psi\}$.

Proposition 1

The sample complexity of any δ-PC algorithm satisfies: for any ϕ with a unique optimal policy,

$$E_{\phi}[\tau_{\delta}] \geq T^* (\phi) \log (1/2.4\delta),$$

where $T^* (\phi) = \sup_{\omega \in \Sigma} \inf_{\psi \in \text{Alt}(\phi)} \sum_{s, a} \omega_{sa} KL(\phi | \psi(s, a))$. (1)
Define:

- The set of alternative MDPs $\text{Alt}(\phi) = \{\psi : \pi^* \text{ is not optimal in } \psi\}$.
- Σ the simplex of \mathbb{R}^{SA}.
Information-Theoretical lower bound

Define:

- The set of alternative MDPs $\text{Alt} (\phi) = \{ \psi : \pi^* \text{ is not optimal in } \psi \}$.
- Σ the simplex of \mathbb{R}^{SA}.
- $\text{KL}_{\phi|\psi}(s, a) = \text{KL}(q_{\phi}(s, a), q_{\psi}(s, a)) + \text{KL}(p_{\phi}(s, a), p_{\psi}(s, a))$
Information-Theoretical lower bound

Define:
- The set of alternative MDPs $\text{Alt}(\phi) = \{\psi : \pi^* \text{ is not optimal in } \psi\}$.
- Σ the simplex of \mathbb{R}^{SA}.
- $\text{KL}_{\phi|\psi}(s, a) = \text{KL}(q_\phi(s, a), q_\psi(s, a)) + \text{KL}(p_\phi(s, a), p_\psi(s, a))$

Proposition 1

The sample complexity of any δ-PC algorithm satisfies: for any ϕ with a unique optimal policy,

$$\mathbb{E}_\phi[\tau_\delta] \geq T^*(\phi) \log(1/2.4\delta),$$

where $T^*(\phi)^{-1} = \sup_{\omega \in \Sigma} \inf_{\psi \in \text{Alt}(\phi)} \sum_{s, a} \omega_{sa} \text{KL}_{\phi|\psi}(s, a)$. \quad (1)
Recall the value functions:

\[V_\phi^\pi(s) = \mathbb{E}_\phi \left[\sum_{t=0}^{\infty} \gamma^t R(s^\pi_t, \pi(s^\pi_t)) \right| s_0 = s = (I - \gamma P_\pi)^{-1} r_\pi \]

\[Q_\phi^\pi(s, a) = r(s, a) + \mathbb{E}_\phi \left[\sum_{t=1}^{\infty} \gamma^t R(s^\pi_t, \pi(s^\pi_t)) \right| s_0 = s, a_0 = a \]
Solving the lower bound program?

Recall the value functions:

\[V_{\phi}^\pi(s) = \mathbb{E}_\phi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t^{\pi}, \pi(s_t^{\pi})) \middle| s_0 = s \right] = (I - \gamma P_\pi)^{-1} r_\pi \]

\[Q_{\phi}^\pi(s, a) = r(s, a) + \mathbb{E}_\phi \left[\sum_{t=1}^{\infty} \gamma^t R(s_t^{\pi}, \pi(s_t^{\pi})) \middle| s_0 = s, a_0 = a \right] \]

By definition: \(\text{Alt}(\phi) = \{ \psi : \exists (s, \pi) \in S \times \Pi, \ V_{\psi}^\pi(s) > V_{\psi}^{\pi^*}(s) \} \).
Solving the lower bound program?

Recall the value functions:

\[V_\phi^\pi(s) = \mathbb{E}_\phi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t^\pi, \pi(s_t^\pi)) \bigg| s_0 = s \right] = (I - \gamma P_\pi)^{-1} r_\pi \]

\[Q_\phi^\pi(s, a) = r(s, a) + \mathbb{E}_\phi \left[\sum_{t=1}^{\infty} \gamma^t R(s_t^\pi, \pi(s_t^\pi)) \bigg| s_0 = s, a_0 = a \right] \]

- By definition: \(\text{Alt}(\phi) = \{ \psi : \exists (s, \pi) \in S \times \Pi, \; V_\psi^\pi(s) > V_\psi^{\pi^*}(s) \} \).
- Involves too many parameters of \(\psi \):

\[\left(r(x, \pi(x)), p(x, \pi(x)), r(x, \pi^*(x)), p(x, \pi^*(x)) \right)_{x \in S} \]
Recall the value functions:

\[V_\phi^\pi(s) = \mathbb{E}_\phi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t^\pi, \pi(s_t^\pi)) \middle| s_0 = s \right] = (I - \gamma P_\pi)^{-1} r_\pi \]

\[Q_\phi^\pi(s, a) = r(s, a) + \mathbb{E}_\phi \left[\sum_{t=1}^{\infty} \gamma^t R(s_t^\pi, \pi(s_t^\pi)) \middle| s_0 = s, a_0 = a \right] \]

- By definition: \(\text{Alt}(\phi) = \{ \psi : \exists (s, \pi) \in S \times \Pi, \ V_\psi^\pi(s) > V_\phi^\pi(s) \} \).
- Involves too many parameters of \(\psi \):

\[\left(r(x, \pi(x)), p(x, \pi(x)), r(x, \pi^*(x)), p(x, \pi^*(x)) \right)_{x \in S} \]

\[\implies \text{We need further simplification.} \]
Solving the lower bound program?

Lemma 2

The set of alternative MDPs can be decomposed as follows:

\[\text{Alt}(\phi) = \bigcup_{(s,a): a \neq \pi^*(s)} \{ \psi : Q_{\psi}^\pi(s, a) > V_{\psi}^\pi(s) \} \] \hspace{1cm} (2)
Solving the lower bound program?

Lemma 2

The set of alternative MDPs can be decomposed as follows:

\[
\text{Alt}(\phi) = \bigcup_{(s,a): a \neq \pi^*(s)} \{\psi : Q_{\psi}^\pi(s, a) > V_{\psi}^\pi(s)\}.
\] (2)

- In contrast with \(Q_{\phi}^\pi(s, a) < V_{\phi}^\pi(s) \), for \(a \neq \pi^*(s) \).
Lemma 2

The set of alternative MDPs can be decomposed as follows:

\[
\text{Alt}(\phi) = \bigcup_{(s,a): a \neq \pi^*(s)} \{ \psi : Q_{\psi}^{\pi^*}(s, a) > V_{\psi}^{\pi^*}(s) \}.
\]

(2)

- In contrast with \(Q_{\phi}^{\pi^*}(s, a) < V_{\phi}^{\pi^*}(s) \), for \(a \neq \pi^*(s) \).
- Only involves \((r(s, a), p(s, a))\) and \((r(x, \pi^*(x)), p(x, \pi^*(x)))\)\(\forall x \in S \) in \(\psi \).
IT Lower bound: Hard to solve!

\[\text{Alt}(\phi) \text{ and } \text{Alt}(s_1 a_1(\phi)) \text{ are not convex.} \]

\[\text{The sub-problem } \min_{\psi \in \text{Alt}(\phi)} \sum_{s,a} \omega \cdot s, a \cdot KL(\phi|\psi(s,a)) \text{ is non-convex.} \]
IT Lower bound: Hard to solve!

\[Q(s_1, a_i) = \frac{r_i}{1 - \gamma p_i}, \quad i = 1, 2. \]
IT Lower bound: Hard to solve!

\[Q(s_1, a_i) = \frac{r_i}{1 - \gamma p_i}, \quad i = 1, 2. \]

- Can easily construct \(\psi \) and \(\overline{\psi} \) such that:

\begin{align*}
\text{Alt}(\phi) \quad & \text{and} \quad \text{Alt}_{s_1 a_1}(\phi) \quad \text{are not convex.} \\
\implies \quad & \text{The sub-problem} \quad \inf_{\psi \in \text{Alt}(\phi)} \sum_{s, a} w_{sa} \text{KL}(\phi || \psi(s, a)) \quad \text{is non-convex.}
\end{align*}
IT Lower bound: Hard to solve!

$Q(s_i, a_i) = \frac{r_i}{1 - \gamma p_i}, \quad i = 1, 2.$

Can easily construct ψ and $\bar{\psi}$ such that:
- Both ψ and $\bar{\psi}$ satisfy $\frac{r_1}{1 - \gamma p_1} > \frac{r_2}{1 - \gamma p_2}$.
IT Lower bound: Hard to solve!

\[Q(s_i, a_i) = \frac{r_i}{1 - \gamma p_i}, \quad i = 1, 2. \]

Can easily construct \(\psi \) and \(\overline{\psi} \) such that:

- Both \(\psi \) and \(\overline{\psi} \) satisfy \(\frac{r_1}{1 - \gamma p_1} > \frac{r_2}{1 - \gamma p_2} \).
- \(\phi = \frac{\psi + \overline{\psi}}{2} \) satisfies \(\frac{r_1}{1 - \gamma p_1} < \frac{r_2}{1 - \gamma p_2} \).
IT Lower bound: Hard to solve!

- $\text{Alt}(\phi)$ and $\text{Alt}_{s_1a_1}(\phi)$ are not convex.
IT Lower bound: Hard to solve!

- Alt(\(\phi\)) and Alt_{s_1a_1}(\(\phi\)) are not convex.
- \(\implies\) The sub-problem \(\inf_{\psi \in \text{Alt}(\phi)} \sum_{s,a} \omega_{sa} \text{KL}_{\phi|\psi}(s, a)\) is non-convex.
IT Lower bound: MDP vs MAB

<table>
<thead>
<tr>
<th></th>
<th>MAB</th>
<th>MDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>$\mu_1 > \ldots \geq \mu_K$</td>
<td>$(r(s, a), p(s, a))_{s,a}$</td>
</tr>
<tr>
<td>Objective</td>
<td>Identify $a^* = \arg \max_{a \in [K]} \mu_a$</td>
<td>Identify $\pi^* = \arg \max_{\pi} (I - \gamma P_{\pi})^{-1} r_\pi$</td>
</tr>
<tr>
<td>Alternative</td>
<td>$\bigcup { \lambda : \lambda_a > \lambda_1 }_{a \neq 1}$</td>
<td>$\bigcup { \psi : Q_{\pi^}^\pi(s, a) > V_{\pi^}^\psi(s) }_{(s, a \neq \pi^*(s)}$</td>
</tr>
<tr>
<td>IT lower bound</td>
<td>Tractable</td>
<td>Hard to solve</td>
</tr>
<tr>
<td></td>
<td>union of convex sets</td>
<td>Not union of convex</td>
</tr>
</tbody>
</table>
Define $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in \text{Alt}(\phi)} \sum_{s,a} \omega_{sa} \text{KL}_{\phi | \psi}(s, a)$.
Upper bound: Idea

Define $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in \text{Alt}(\phi)} \sum_{s,a} \omega_{sa} \text{KL}_{\phi|\psi}(s, a)$.

Figure: Alt(ϕ): Non-convex boundary
Define $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in \text{Alt}(\phi)} \sum_{s,a} \omega_{sa} \text{KL}_{\phi|\psi}(s, a)$.

Figure: KL Ball
Define:

- The sub-optimality gap: $\Delta_{sa} = V^*_\phi(s) - Q^*_\phi(s, a)$.
- The minimum gap $\Delta_{\min} = \min_{s,a \neq \pi^*(s)} \Delta_{sa}$.
- The variance of the value function $\text{Var}_{(s,a)}[V^*_\phi] = \mathbb{E}_{s' \sim p_\phi(.|s,a)}[V^*_\phi(s)]$.
- The span of the value function $\text{sp}[V^*_\phi] = \max_s V^*_\phi(s) - \min_s V^*_\phi(s)$.
Upper bound of the characteristic time

Theorem 1 (Upper bound of minimal sample complexity)

For all vectors ω in the simplex:

$$T(\phi, \omega) \leq U(\phi, \omega) \triangleq \max_{s, a \neq \pi^*(s)} \frac{T_1(s, a; \phi)}{\omega_{sa}} + \frac{T_2(s, a; \phi)}{\omega_{s, \pi^*(s)}} + \frac{T_3(\phi)}{\min_s \omega_{s, \pi^*(s)}} + \frac{T_4(\phi)}{\omega_{s, \pi^*(s)}}$$

where

$$T_1(s, a; \phi) = \frac{2}{\Delta_{sa}^2},$$

$$T_2(s, a; \phi) = \max \left(\frac{16\text{Var}(s, a)[V_{\phi}^*]}{\Delta_{sa}^2}, \frac{6sp[V_{\phi}^*]^{4/3}}{\Delta_{sa}^{4/3}} \right),$$

$$T_3(\phi) = \frac{2}{[\Delta_{\min}(\phi)(1 - \gamma)]^2},$$

$$T_4(\phi) \leq \frac{27}{\Delta_{\min}(\phi)^2(1 - \gamma)^3} = O \left(\frac{\text{Minimax lower bound}}{SA} \right)$$
KLB-TS: Sampling rule

The optimal weights minimizing the upper-bound program:

\[
ω(φ) = \arg \inf_{ω ∈ Σ} \max_{a \neq \pi}(s, a) : T_1(s, a; φ) + T_2(s, a; φ) + T_3(φ) + T_4(φ) = \omega_{sa} + T_3(φ) + T_4(φ)
\]

are easy to compute!

Use C-Tracking [Garivier and Kaufmann, 2016]:

\[
\omega(\hat{φ}_t) \text{ on } \{ω ∈ Σ : \forall (s, a) , ω_{sa} ≥ 1/√t\}
\]

\[
(\hat{s}_t+1, \hat{a}_{t+1}) \in \arg \max_{(s, a) ∈ S × A} \sum_{t=1}^\infty \tilde{ω}_{sa}(\hat{φ}_s) - N_{sa}(t).
\]

Ensures that

\[
P_{φ}(∀(s, a) ∈ S × A, \lim_{t→∞} N_{sa}(t) = ω_{sa}(φ) = 1).
\]
The optimal weights minimizing the upper-bound program:

\[
\overline{\omega}(\phi) = \arg \inf_{\omega \in \Sigma} \max_{(s,a): a \neq \pi^*(s)} \frac{T_1(s,a; \phi) + T_2(s,a; \phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s,\pi^*(s)}}
\]

are easy to compute!
The optimal weights minimizing the upper-bound program:

\[
\overline{\omega}(\phi) = \arg \inf_{\omega \in \Sigma} \max_{(s, a) : a \neq \pi^*(s)} \frac{T_1(s, a; \phi) + T_2(s, a; \phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s, \pi^*(s)}}
\]

are easy to compute!

\[
\omega_{sa} \propto \frac{1 + \text{Var}_{p_{\phi}(s, a)}[V^*]}{\Delta_{s, a}^2}.
\]
KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

\[
\overline{\omega}(\phi) = \arg \inf_{\omega \in \Sigma} \max_{(s,a):a \neq \pi^*(s)} \frac{T_1(s, a; \phi) + T_2(s, a; \phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s, \pi^*(s)}}
\]

are easy to compute!

- \(\overline{\omega}_{sa} \propto \frac{1 + \text{Var}_{p_{\phi}(s,a)}[V_{\phi}]}{\Delta_{s,a}^2}\).

- \(\overline{\omega}_{s, \pi^*(s)} \propto \frac{1 + \text{Var}_{\text{max}}^*[V_{\phi}]}{\Delta_{\text{min}}^2(1 - \gamma)^2\} \).
The optimal weights minimizing the upper-bound program:

$$\overline{w}(\phi) = \arg \inf_{\omega \in \Sigma} \max_{(s,a):a \neq \pi^*(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s,\pi^*(s)}}$$

are easy to compute!

Use C-Tracking [Garivier and Kaufmann, 2016]:

$$\text{Project} \overline{w}(\hat{\phi}_t) \text{ on } \{\omega \in \Sigma : \forall (s,a), \omega_{sa} \geq 1/\sqrt{t}\} \text{ to get } \tilde{\omega}(\hat{\phi}_t).$$

$$\text{(st+1, at+1)} \in \arg \max_{(s,a) \in S \times A} \sum_t \tilde{\omega}_{sa}(\hat{\phi}_s) - N_{sa}(t).$$

Ensures that

$$P_{\phi}(\forall (s,a) \in S \times A, \lim_{t \to \infty} N_{sa}(t) = \overline{w}_{s,a}(\phi)).$$

Aymen Al Marjani
Adaptive Sampling for BPI
16 Juin 2021
18 / 29
The optimal weights minimizing the upper-bound program:

$$
\bar{\omega}(\phi) = \arg \inf_{\omega \in \Sigma} \max_{(s,a): a \neq \pi^*(s)} \frac{T_1(s, a; \phi) + T_2(s, a; \phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s, \pi^*(s)}}
$$

are easy to compute!

Use C-Tracking [Garivier and Kaufmann, 2016]:

- Project $\bar{\omega}(\hat{\phi}_t)$ on $\{\omega \in \Sigma : \forall (s, a), \omega_{sa} \geq \frac{1}{\sqrt{t}}\}$ to get $\tilde{\omega}(\hat{\phi}_t)$.

Aymen Al Marjani
Adaptive Sampling for BPI
16 Juin 2021 18 / 29
KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

\[
\bar{\omega}(\phi) = \arg\inf_{\omega \in \Sigma} \max_{(s,a):a \neq \pi^*(s)} \frac{T_1(s, a; \phi) + T_2(s, a; \phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s, \pi^*(s)}}
\]

are easy to compute!

- Use C-Tracking [Garivier and Kaufmann, 2016]:
 - Project \(\bar{\omega}(\hat{\phi}_t)\) on \(\{\omega \in \Sigma : \forall (s, a), \omega_{sa} \geq \frac{1}{\sqrt{t}}\}\) to get \(\tilde{\omega}(\hat{\phi}_t)\).
 - \((s_{t+1}, a_{t+1}) \in \arg\max_{(s,a) \in S \times A} \sum_{s=1}^{t} \tilde{\omega}_{sa}(\hat{\phi}_s) - N_{sa}(t)\).
KLB-TS: Sampling rule

- The optimal weights minimizing the upper-bound program:

\[\bar{\omega}(\phi) = \arg \inf_{\omega \in \Sigma} \max_{(s,a): a \neq \pi^*(s)} \frac{T_1(s, a; \phi) + T_2(s, a; \phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s, \pi^*(s)}} \]

are easy to compute!

- Use C-Tracking [Garivier and Kaufmann, 2016]:
 - Project \(\bar{\omega}(\hat{\phi}_t) \) on \(\{ \omega \in \Sigma : \forall (s, a), \ \omega_{sa} \geq \frac{1}{\sqrt{t}} \} \) to get \(\tilde{\omega}(\hat{\phi}_t) \).
 - \((s_{t+1}, a_{t+1}) \in \arg \max_{(s,a) \in S \times A} \sum_{s=1}^{t} \tilde{\omega}_sa(\hat{\phi}_s) - N_{sa}(t) \).
 - Ensures that \(\mathbb{P}_\phi \left(\forall (s, a) \in S \times A, \ \lim_{t \to \infty} \frac{N_{sa}(t)}{t} = \bar{\omega}_{s,a}(\phi) \right) = 1. \)
We ensure that ϕ falls within the KL-ball with probability $1 - \delta$, using PAC bounds on the KL divergence.
We ensure that \(\phi \) falls within the KL-ball with probability \(1 - \delta \), using PAC bounds on the KL divergence.
Algorithm: Guarantees

Theorem 3

KLB-TS has a sample complexity τ_δ satisfying:
for all $\delta \in (0, 1)$, $\mathbb{E}_\phi[\tau_\delta]$ is finite and $\limsup_{\delta \to 0} \frac{\mathbb{E}_\phi[\tau_\delta]}{\log(1/\delta)} \leq 4U(\phi)$, where:

$$U(\phi) \triangleq \inf_\omega U(\phi, \omega)$$

$$= \mathcal{O}\left(S \min \left(\frac{\text{Var}^\ast_{\text{max}}[V^\ast_\phi]}{\Delta^2_{\text{min}}(1-\gamma)^2}, \frac{1}{\Delta^2_{\text{min}}(1-\gamma)^3} \right) \right)$$

$$+ \sum_{s,a \neq \pi^\ast(s)} \frac{1 + \text{Var}_{(s,a)}[V^\ast_\phi]}{\Delta^2_{s,a}}$$

- $\text{Var}^\ast_{\text{max}}[V^\ast_\phi] = \max_s \text{Var}_{(s,\pi^\ast(s))}[V^\ast_\phi]$.

Aymen Al Marjani
Comparison with State of the Art: BESPOKE

Advantages:

1. Provides a clear stopping rule to find an ϵ-optimal policy.
2. First problem-specific bound, w.h.p:
 \[\tau \leq \tilde{O} \left(\sum_{s \in S} \min \left(\frac{1}{1 - \gamma} \Delta^2, \text{Var}(s, \pi^\star(s)) \right) R + \gamma^2 \text{Var}(s, \pi^\star(s)) \phi \right) \Delta^2 \]
Comparison with State of the Art: BESPOKE

1 Advantages:
 - Provides a clear stopping rule to find an \(\varepsilon \)-optimal policy.
Advantages:

- Provides a clear stopping rule to find an ε-optimal policy.

- First problem-specific bound, w.h.p:

$$\tau_\delta \leq \tilde{O}\left(\sum_{s \in S} \min\left(\frac{1}{(1 - \gamma)^3 \Delta_{\min}^2}, \frac{\text{Var}(s, \pi^*(s))[R] + \gamma^2 \text{Var}(s, \pi^*(s))[V^*]}{\Delta_{\min}^2}\right) + \sum_{s, a \neq \pi^*(s)} \frac{\text{Var}[R(s, a)] + \gamma^2 \text{Var}_p(s, a)[V^*]}{\Delta_{sa}^2} + \frac{S^2 A}{(1 - \gamma)^2}\right).$$
Comparison with State of the Art: BESPOKE

1 Advantages:
 - Provides a clear stopping rule to find an ε-optimal policy.
 - First problem-specific bound, w.h.p:

\[
\tau_\delta \leq \widetilde{O} \left(\sum_{s \in S} \min \left(\frac{1}{(1-\gamma)^3 \Delta_{\min}^2}, \frac{\text{Var}(s, \pi^*(s))[R] + \gamma^2 \text{Var}(s, \pi^*(s))[V^*_\phi]}{\Delta_{\min}^2} \right)
 + \sum_{s, a \neq \pi^*(s)} \frac{\text{Var}[R(s, a)] + \gamma^2 \text{Var}_p(s, a)[V^*_\phi]}{\Delta_{sa}^2} + \frac{S^2 A}{(1-\gamma)^2} \right).
\]

2 Drawbacks:
 - Solves a convex problem at every step.
Comparison with State of the Art: BESPOKE

Advantages:
- Provides a clear stopping rule to find an ε-optimal policy.
- First problem-specific bound, w.h.p:

$$\tau_\delta \leq \tilde{O} \left(\sum_{s \in S} \min \left(\frac{1}{(1 - \gamma)^3 \Delta_{\min}^2}, \frac{\text{Var}(s, \pi^*(s))[R] + \gamma^2 \text{Var}(s, \pi^*(s))[V^*]}{\Delta_{\min}^2} \right) \right)$$

$$+ \sum_{s, a \neq \pi^*(s)} \frac{\text{Var}[R(s, a)] + \gamma^2 \text{Var}_p(s, a)[V^*]}{\Delta_{sa}^2} + \frac{S^2 A}{(1 - \gamma)^2}. $$

Drawbacks:
- Solves a convex problem at every step.
- Large burn-in phase: $\Omega \left(\frac{S^2 A \log(1/\delta)}{(1 - \gamma)^2} \right)$.
Experiments

Figure: Asymptotic bound: $S=A=2$, $\gamma = 0.5$.
Figure: KLB-TS vs. BESPOKE. $S=A=2$, $\gamma = 0.5$.
Most of BESPOKE’s sample complexity comes from the burn-in phase $\Omega\left(\frac{S^2 A \log(1/\delta)}{(1-\gamma)^2}\right)$.
Conclusion

1. Algorithms designed using *problem-specific* bounds can achieve better sample complexity than minimax ones.

2. Contrary to MAB, IT lower bound is hard to solve for MDPs.

3. We can derive problem-specific surrogates which:
 - Are *explicit*, depending on functionals of the MDP.
 - Have a corresponding allocation that is easy to compute.

4. Can be used to devise (Asymptocically) Matching algorithm.

5. First step towards understanding problem-specific ε-optimal policy identification.
Merci !

