Echantillonnage adaptatif pour l'identification de la politique optimale dans les PDMs

Aymen Al Marjani¹ en collaboration avec Alexandre Proutiere²

¹UMPA, ENS Lyon

²KTH Royal Institute of Technology

CAp 2021 16 Juin 2021

1 Introduction

- 2 Lower Bound
- 3 Upper bound of the characteristic time
- 4 Algorithm

How many samples does it take to learn an optimal policy in RL ?

$$\phi = <\boldsymbol{\mathcal{S}}, \boldsymbol{\mathcal{A}}, \boldsymbol{p}_{\phi}, \boldsymbol{q}_{\phi}, \gamma >$$

() S, A: Finite state and action spaces.

$\phi = <\mathcal{S}, \mathcal{A}, \mathbf{p}_{\phi}, \mathbf{q}_{\phi}, \gamma >$

- **(**) S, A: **Finite** state and action spaces.
- After choosing action a at state s the agent:
 - receives reward R(s, a) ~ q_φ(.|s, a) and mean r(s, a) ≜ E_{q(.|s,a)}[R(s, a)].
 - makes transition to $s' \sim p_{\phi}(.|s,a)$.

Figure: src:packtpub

$\phi = <\mathcal{S}, \mathcal{A}, \textit{p}_{\phi}, \textit{q}_{\phi}, \gamma >$

- **(**) S, A: **Finite** state and action spaces.
- After choosing action a at state s the agent:
 - receives reward R(s, a) ~ q_φ(.|s, a) and mean r(s, a) ≜ E_{q(.|s,a)}[R(s, a)].
 - makes transition to $s' \sim p_{\phi}(.|s,a)$.
 - For simplicity, we assume q with support in [0, 1].

Figure: src:packtpub

 $\phi = < S, A, p_{\phi}, q_{\phi}, \gamma >$

• $\gamma \in [0, 1)$ is the discount factor.

- $\gamma \in [0,1)$ is the discount factor.
- Identify a policy $\pi: S \to A$ maximizing the total discounted reward:

• $\gamma \in [0,1)$ is the discount factor.

• Identify a policy $\pi: S \to A$ maximizing the total discounted reward:

$$\pi_{\phi}^{\star} \in \arg\max_{\pi} V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \bigg[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \bigg| s_{0} = s \bigg]$$

• $\gamma \in [0,1)$ is the discount factor.

• Identify a policy $\pi: S \to A$ maximizing the total discounted reward:

$$\pi_{\phi}^{\star} \in \arg\max_{\pi} V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \bigg[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \bigg| s_{0} = s \bigg]$$

• Assumption 1: $\pi^{\star} \triangleq \pi^{\star}_{\phi}$ is unique.

• Online model: The agent can only follow trajectories: $(s_0, a_0, R_0, s_1, a_1 \dots,)$ where $s_{t+1} \sim p_{\phi}(.|s_t, a_t)$.

• **Online model:** The agent can only follow trajectories: $(s_0, a_0, R_0, s_1, a_1 \dots)$ where $s_{t+1} \sim p_{\phi}(.|s_t, a_t)$.

• **Generative model:** At round *t*, the agent can sample *any* pair (s_t, a_t) . She then observes $(R_t, s'_t) \sim q_\phi(.|s_t, a_t) \otimes p_\phi(.|s_t, a_t)$. Next, she can choose *any* other pair (s_{t+1}, a_{t+1}) independently of her *previous state*.

• Online model: The agent can only follow trajectories: $(s_0, a_0, R_0, s_1, a_1 \dots,)$ where $s_{t+1} \sim p_{\phi}(.|s_t, a_t)$.

• **Generative model:** At round *t*, the agent can sample *any* pair (s_t, a_t) . She then observes $(R_t, s'_t) \sim q_\phi(.|s_t, a_t) \otimes p_\phi(.|s_t, a_t)$. Next, she can choose *any* other pair (s_{t+1}, a_{t+1}) independently of her *previous state*.

In this talk, we focus on the Generative model.

Sampling rule: How to select next pair to sample depending on past observations: (s_{t+1}, a_{t+1}) is F_t ≜ σ((s_j, a_j, R_j, s'_j)_{1≤j≤t}) measurable.

- Sampling rule: How to select next pair to sample depending on past observations: (s_{t+1}, a_{t+1}) is F_t ≜ σ((s_j, a_j, R_j, s'_j)_{1≤j≤t}) measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns $\hat{\pi}_{\tau}^{\star}$. τ is a stopping time w.r.t. the filtration $(\mathcal{F}_t)_{t\geq 1}$.

- Sampling rule: How to select next pair to sample depending on past observations: (s_{t+1}, a_{t+1}) is F_t ≜ σ((s_j, a_j, R_j, s'_j)_{1≤j≤t}) measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns π^{*}_τ. τ is a stopping time w.r.t. the filtration (F_t)_{t≥1}.
- δ -PC algorithm: $\mathbb{P}_{\phi}(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}) \leq \delta$.

- Sampling rule: How to select next pair to sample depending on past observations: (s_{t+1}, a_{t+1}) is F_t ≜ σ((s_j, a_j, R_j, s'_j)_{1≤j≤t}) measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns π^{*}_τ. τ is a stopping time w.r.t. the filtration (F_t)_{t≥1}.
- δ -PC algorithm: $\mathbb{P}_{\phi}(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}) \leq \delta$.
- Identify π^* as fast as possible!

- Sampling rule: How to select next pair to sample depending on past observations: (s_{t+1}, a_{t+1}) is F_t ≜ σ((s_j, a_j, R_j, s'_j)_{1≤j≤t}) measurable.
- Stopping rule: The algorithm stops sampling after collecting τ samples and returns π^{*}_τ. τ is a stopping time w.r.t. the filtration (F_t)_{t≥1}.
- δ -PC algorithm: $\mathbb{P}_{\phi}(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}) \leq \delta$.
- Identify π^* as fast as possible!

 \implies Algorithm with minimal sample complexity $\mathbb{E}[\tau_{\delta}]$

• Minimax over a set of MDPs Φ :

$$\inf_{\mathbb{A}:\delta-\mathrm{PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

• Minimax over a set of MDPs Φ:

$$\inf_{\mathbb{A}:\delta-\mathrm{PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

• Minimax lower bounds often come from pathological examples. Real world scenarios are not that hard (unless in adversarial settings).

• Minimax over a set of MDPs Φ:

$$\inf_{\mathbb{A}:\delta-\mathrm{PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

- Minimax lower bounds often come from pathological examples. Real world scenarios are not that hard (unless in adversarial settings).
- Algorithms that sample state-actions uniformly at random are sufficient to be minimax optimal !

Learning: be specific!

Two kinds of guarantees:

 Minimax over a set of MDPs Φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

Instance-specific: For a given φ:

$$\inf_{\mathbb{A}:\delta-\mathrm{PC}} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

Learning: be specific!

Two kinds of guarantees:

 Minimax over a set of MDPs Φ:

 $\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\phi\in\Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$

Instance-specific: For a given φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

Learning: be specific!

Two kinds of guarantees:

 Minimax over a set of MDPs Φ:

 $\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$

Instance-specific: For a given φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

• We seek algorithms that can adapt to the hardness of the instance.

Information-Theoretical lower bound

• The set of alternative MDPs $Alt(\phi) = \{\psi : \pi^* \text{ is not optimal in } \psi\}.$

- The set of alternative MDPs Alt(φ) = {ψ : π^{*} is not optimal in ψ}.
- Σ the simplex of \mathbb{R}^{SA} .

- The set of alternative MDPs Alt(φ) = {ψ : π^{*} is not optimal in ψ}.
- Σ the simplex of \mathbb{R}^{SA} .
- $\operatorname{KL}_{\phi|\psi}(s,a) = \operatorname{KL}(q_{\phi}(s,a), q_{\psi}(s,a)) + \operatorname{KL}(p_{\phi}(s,a), p_{\psi}(s,a))$

- The set of alternative MDPs $Alt(\phi) = \{\psi : \pi^* \text{ is not optimal in } \psi\}.$
- Σ the simplex of \mathbb{R}^{SA} .
- $\operatorname{KL}_{\phi|\psi}(s,a) = \operatorname{KL}(q_{\phi}(s,a), q_{\psi}(s,a)) + \operatorname{KL}(p_{\phi}(s,a), p_{\psi}(s,a))$

Proposition 1

The sample complexity of any $\delta\text{-PC}$ algorithm satisfies: for any ϕ with a unique optimal policy,

$$\mathbb{E}_{\phi}[\tau_{\delta}] \ge T^{\star}(\phi) \log(1/2.4\delta),$$

where $T^{\star}(\phi)^{-1} = \sup_{\omega \in \Sigma} \inf_{\psi \in \mathsf{Alt}(\phi)} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\phi|\psi}(s, a).$ (1)

Solving the lower bound program?

Recall the value functions:

$$V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s \right] = (I - \gamma P_{\pi})^{-1} r_{\pi}$$
$$Q_{\phi}^{\pi}(s, a) = r(s, a) + \mathbb{E}_{\phi} \left[\sum_{t=1}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s, a_{0} = a \right]$$

Solving the lower bound program?

Recall the value functions:

$$V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s \right] = (I - \gamma P_{\pi})^{-1} r_{\pi}$$
$$Q_{\phi}^{\pi}(s, a) = r(s, a) + \mathbb{E}_{\phi} \left[\sum_{t=1}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s, a_{0} = a \right]$$

• By definition: Alt $(\phi) = \{\psi : \exists (s, \pi) \in \mathcal{S} \times \Pi, \ V_{\psi}^{\pi}(s) > V_{\psi}^{\pi^{\star}}(s) \}.$

Recall the value functions:

$$V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s \right] = (I - \gamma P_{\pi})^{-1} r_{\pi}$$
$$Q_{\phi}^{\pi}(s, a) = r(s, a) + \mathbb{E}_{\phi} \left[\sum_{t=1}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s, a_{0} = a \right]$$

By definition: Alt(φ) = {ψ : ∃(s, π) ∈ S × Π, V^π_ψ(s) > V^{π*}_ψ(s)}.
Involves too many parameters of ψ:

$$\left(r(x,\pi(x)),p(x,\pi(x)),r(x,\pi^{\star}(x)),p(x,\pi^{\star}(x))\right)_{x\in\mathcal{S}}$$

Recall the value functions:

$$V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s \right] = (I - \gamma P_{\pi})^{-1} r_{\pi}$$
$$Q_{\phi}^{\pi}(s, a) = r(s, a) + \mathbb{E}_{\phi} \left[\sum_{t=1}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \middle| s_{0} = s, a_{0} = a \right]$$

By definition: Alt(φ) = {ψ : ∃(s, π) ∈ S × Π, V^π_ψ(s) > V^{π*}_ψ(s)}.
Involves too many parameters of ψ:

$$\left(r(x,\pi(x)),p(x,\pi(x)),r(x,\pi^{\star}(x)),p(x,\pi^{\star}(x))\right)_{x\in\mathcal{S}}$$

 \implies We need further simplification.

Lemma 2

The set of alternative MDPs can be decomposed as follows:

$$\mathsf{Alt}(\phi) = \bigcup_{(s,a): a \neq \pi^{\star}(s)} \{ \psi : \ Q_{\psi}^{\pi^{\star}}(s,a) > V_{\psi}^{\pi^{\star}}(s) \}.$$
(2)
Lemma 2

The set of alternative MDPs can be decomposed as follows:

$$\mathsf{Alt}(\phi) = \bigcup_{(s,a): a \neq \pi^{\star}(s)} \{ \psi : \ Q_{\psi}^{\pi^{\star}}(s,a) > V_{\psi}^{\pi^{\star}}(s) \}.$$
(2)

• In contrast with $Q_{\phi}^{\pi^{\star}}(s,a) < V_{\phi}^{\pi^{\star}}(s)$, for $a \neq \pi^{\star}(s)$.

Lemma 2

The set of alternative MDPs can be decomposed as follows:

$$\mathsf{Alt}(\phi) = \bigcup_{(s,a): a \neq \pi^{\star}(s)} \{ \psi : \ \mathcal{Q}_{\psi}^{\pi^{\star}}(s,a) > V_{\psi}^{\pi^{\star}}(s) \}.$$
(2)

- In contrast with $Q_{\phi}^{\pi^{\star}}(s,a) < V_{\phi}^{\pi^{\star}}(s)$, for $a \neq \pi^{\star}(s)$.
- Only involves (r(s, a), p(s, a)) and $(r(x, \pi^*(x)), p(x, \pi^*(x)))_{x \in S}$ in ψ .

start
$$\rightarrow$$
 s_1
 r_1, p_1
 $r_1 = 0, p_1' = 1 - p_1 = 0, p = 1$
 s_1
 $r_2, p_2 = 1$

•
$$Q(s_1, a_i) = \frac{r_i}{1 - \gamma p_i}, \ i = 1, 2.$$

start
$$\rightarrow$$
 $r_1, p_1 r_1' = 0, p_1' = 1 - p_1 = 0, p = 1$
 $r_2, p_2 = 1$

•
$$Q(s_1, a_i) = \frac{r_i}{1 - \gamma p_i}, \ i = 1, 2.$$

• Can easily construct ψ and $\overline{\psi}$ such that:

start
$$r_{1}, p_{1}$$
 $r_{1}' = 0, p_{1}' = 1 - p_{1}^{r} = 0, p = 1$
 $r_{2}, p_{2} = 1$

•
$$Q(s_1, a_i) = \frac{r_i}{1 - \gamma p_i}, \ i = 1, 2.$$

• Can easily construct ψ and $\overline{\psi}$ such that:

• Both
$$\psi$$
 and $\overline{\psi}$ satisfy $\frac{r_1}{1-\gamma p_1} > \frac{r_2}{1-\gamma p_2}$.

start
$$\rightarrow$$
 $r_1, p_1, r_1' = 0, p_1' = 1 - p_1 = 0, p = 1$
 $r_2, p_2 = 1$

•
$$Q(s_1, a_i) = \frac{r_i}{1 - \gamma p_i}, i = 1, 2.$$

• Can easily construct ψ and $\overline{\psi}$ such that:

• Both
$$\psi$$
 and ψ satisfy $\frac{r_1}{1-\gamma p_1} > \frac{r_2}{1-\gamma p_2}$.

•
$$\phi = \frac{\psi + \psi}{2}$$
 satisfies $\frac{r_1}{1 - \gamma p_1} < \frac{r_2}{1 - \gamma p_2}$.

• Alt(ϕ) and Alt_{s1a1}(ϕ) are not convex.

- Alt(ϕ) and Alt_{s1a1}(ϕ) are not convex.
- \implies The sub-problem $\inf_{\psi \in \mathsf{Alt}(\phi)} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\phi|\psi}(s,a)$ is non-convex.

	MAB	MDP
Parameters	$\mu_1 > \ldots \ge \mu_K$	$(r(s,a),p(s,a))_{s,a}$
Objective	Identify	Identify
	$a^{\star} = rg\max_{a \in [K]} \mu_{a}$	$\pi^{\star} = rg\max_{\pi} \ (I - \gamma P_{\pi})^{-1} r_{\pi}$
Alternative	$\bigcup \{\lambda : \lambda_a > \lambda_1\}$	$igcup = \{\psi: \ Q_\psi^{\pi^\star}(s,a) > V_\psi^{\pi^\star}(s)\}$
	a \neq 1	$(s,a \neq \pi^{\star}(s))$
instances	union of convex sets	Not union of convex
IT lower	Tractable	Hard to solve
bound		

Define
$$T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in Alt(\phi)} \sum_{s,a} \omega_{sa} KL_{\phi|\psi}(s, a).$$

Upper bound: Idea

Define $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in \mathsf{Alt}(\phi)} \sum_{s, a} \omega_{sa} \mathrm{KL}_{\phi|\psi}(s, a).$ / **p**ψ(s, a) ***** $r_{\psi}(s,a)$

Figure: Alt(ϕ): Non-convex boundary

Upper bound: Idea

Define $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in Alt(\phi)} \sum_{s,a} \omega_{sa} KL_{\phi|\psi}(s, a).$

Figure: KL Ball

Define:

- The sub-optimality gap: $\Delta_{sa} = V^{\star}_{\phi}(s) Q^{\star}_{\phi}(s,a).$
- The minimum gap $\Delta_{\min} = \min_{s,a \neq \pi^{\star}(s)} \Delta_{sa}$.
- The variance of the value function $\operatorname{Var}_{(s,a)}[V_{\phi}^{\star}] = \mathbb{V}_{s' \sim p_{\phi}(.|s,a)}[V_{\phi}^{\star}(s)].$
- The span of the value function $\operatorname{sp}[V_{\phi}^{\star}] = \max_{s} V_{\phi}^{\star}(s) \min_{s} V_{\phi}^{\star}(s)$.

Upper bound of the characteristic time

Theorem 1 (Upper bound of minimal sample complexity)

For all vectors ω in the simplex:

$$T(\phi,\omega) \leq U(\phi,\omega) \triangleq \max_{s,a \neq \pi^*(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min \omega_{s,\pi^*(s)}},$$

$$\begin{cases}
T_1(s,a;\phi) = \frac{2}{\Delta_{sa}^2}, \\
T_2(s,a;\phi) = \max\left(\frac{16\operatorname{Var}_{(s,a)}[V_{\phi}^*]}{\Delta_{sa}^2}, \frac{6\operatorname{sp}[V_{\phi}^*]^{4/3}}{\Delta_{sa}^{4/3}}\right), \\
T_3(\phi) = \frac{2}{[\Delta_{\min}(\phi)(1-\gamma)]^2}, \\
T_4(\phi) \leq \frac{27}{\Delta_{\min}(\phi)^2(1-\gamma)^3} = \mathcal{O}\left(\frac{\operatorname{Minimax\ lower\ bound}}{SA}\right)
\end{cases}$$

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \underset{\omega \in \Sigma}{\operatorname{arg inf}} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \underset{\omega \in \Sigma}{\operatorname{arg inf}} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_{s} \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

•
$$\overline{\omega}_{sa} \propto rac{1 + \operatorname{Var}_{P_{\phi}(s,a)}[V_{\phi}^{\star}]}{\Delta_{s,a}^2}.$$

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \underset{\omega \in \Sigma}{\operatorname{arg inf}} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_{s} \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

•
$$\overline{\omega}_{sa} \propto \frac{1 + \operatorname{Var}_{\rho_{\phi}(s,a)}[V_{\phi}^{\star}]}{\Delta_{s,a}^2}.$$

• $\overline{\omega}_{s,\pi^{\star}(s)} \propto \frac{1 + \operatorname{Var}_{\max}^{\star}[V_{\phi}^{\star}]}{\Delta_{\min}^2(1-\gamma)^2}.$

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \underset{\omega \in \Sigma}{\operatorname{arg inf}} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_{s} \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

• Use C-Tracking [Garivier and Kaufmann, 2016]:

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \operatorname*{arg \, inf}_{\omega \in \Sigma} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

Use C-Tracking [Garivier and Kaufmann, 2016]:
 Project ω(φ̂t) on {ω ∈ Σ : ∀(s, a), ω_{sa} ≥ 1/(t)} to get ω(φ̂t).

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \underset{\omega \in \Sigma}{\operatorname{arg inf}} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_{s} \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

• Use C-Tracking [Garivier and Kaufmann, 2016]:

- Project $\overline{\omega}(\widehat{\phi}_t)$ on $\{\omega \in \Sigma : \forall (s, a), \ \omega_{sa} \geq \frac{1}{\sqrt{t}}\}$ to get $\widetilde{\omega}(\widehat{\phi}_t)$.
- $(s_{t+1}, a_{t+1}) \in \underset{(s,a) \in \mathcal{S} \times \mathcal{A}}{\operatorname{arg max}} \sum_{s=1}^{t} \tilde{\omega}_{sa}(\widehat{\phi}_s) N_{sa}(t).$

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \operatorname*{arg \, inf}_{\omega \in \Sigma} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

• Use C-Tracking [Garivier and Kaufmann, 2016]:

• Project
$$\overline{\omega}(\widehat{\phi}_t)$$
 on $\{\omega \in \Sigma : \forall (s, a), \omega_{sa} \geq \frac{1}{\sqrt{t}}\}$ to get $\widetilde{\omega}(\widehat{\phi}_t)$.

•
$$(s_{t+1}, a_{t+1}) \in \underset{(s,a)\in\mathcal{S}\times\mathcal{A}}{\operatorname{arg\,max}} \sum_{s=1}^{t} \widetilde{\omega}_{sa}(\widehat{\phi}_s) - N_{sa}(t).$$

• Ensures that $\mathbb{P}_{\phi}\left(\forall (s, a) \in \mathcal{S} \times \mathcal{A}, \quad \lim_{t \to \infty} \frac{N_{sa}(t)}{t} = \overline{\omega}_{s,a}(\phi)\right) = 1.$

KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

• We ensure that ϕ falls within the KL-ball with probability $1 - \delta$, using PAC bounds on the KL divergence.

Theorem 3

KLB-TS has a sample complexity τ_{δ} satisfying: for all $\delta \in (0, 1)$, $\mathbb{E}_{\phi}[\tau_{\delta}]$ is finite and $\limsup_{\delta \to 0} \frac{\mathbb{E}_{\phi}[\tau_{\delta}]}{\log(1/\delta)} \leq 4U(\phi)$, where:

$$U(\phi) \triangleq \inf_{\omega} U(\phi, \omega)$$

= $\mathcal{O}\left(S \min\left(\frac{\operatorname{Var}_{\max}^{\star}[V_{\phi}^{\star}]}{\Delta_{\min}^{2}(1-\gamma)^{2}}, \frac{1}{\Delta_{\min}^{2}(1-\gamma)^{3}}\right)$
+ $\sum_{s,a \neq \pi^{\star}(s)} \frac{1 + \operatorname{Var}_{(s,a)}[V_{\phi}^{\star}]}{\Delta_{s,a}^{2}}\right)$

• $\operatorname{Var}_{\max}^{\star}[V_{\phi}^{\star}] = \max_{s} \operatorname{Var}_{(s,\pi^{\star}(s))}[V_{\phi}^{\star}].$

Advantages:

Advantages:

• Provides a clear stopping rule to find an ε -optimal policy.

Advantages:

- Provides a clear stopping rule to find an ε -optimal policy.
- First problem-specific bound, w.h.p:

$$\tau_{\delta} \leq \tilde{\mathcal{O}}\left(\sum_{s\in\mathcal{S}} \min\left(\frac{1}{(1-\gamma)^{3}\Delta_{\min}^{2}}, \frac{\operatorname{Var}_{(s,\pi^{\star}(s))}[R] + \gamma^{2}\operatorname{Var}_{(s,\pi^{\star}(s))}[V_{\phi}^{\star}]}{\Delta_{\min}^{2}}\right) + \sum_{s,a\neq\pi^{\star}(s)} \frac{\operatorname{Var}[R(s,a)] + \gamma^{2}\operatorname{Var}_{\rho(s,a)}[V_{\phi}^{\star}]}{\Delta_{sa}^{2}} + \frac{S^{2}A}{(1-\gamma)^{2}}\right).$$

Advantages:

- Provides a clear stopping rule to find an ε -optimal policy.
- First problem-specific bound, w.h.p:

$$\tau_{\delta} \leq \tilde{\mathcal{O}}\left(\sum_{s \in \mathcal{S}} \min\left(\frac{1}{(1-\gamma)^{3}\Delta_{\min}^{2}}, \frac{\operatorname{Var}_{(s,\pi^{\star}(s))}[R] + \gamma^{2}\operatorname{Var}_{(s,\pi^{\star}(s))}[V_{\phi}^{\star}]}{\Delta_{\min}^{2}}\right) + \sum_{s,a \neq \pi^{\star}(s)} \frac{\operatorname{Var}[R(s,a)] + \gamma^{2}\operatorname{Var}_{\rho(s,a)}[V_{\phi}^{\star}]}{\Delta_{sa}^{2}} + \frac{S^{2}A}{(1-\gamma)^{2}}\right).$$

Orawbacks:

• Solves a convex problem at every step.

Advantages:

- Provides a clear stopping rule to find an $\varepsilon\text{-optimal policy.}$
- First problem-specific bound, w.h.p:

$$\tau_{\delta} \leq \tilde{\mathcal{O}}\left(\sum_{s \in \mathcal{S}} \min\left(\frac{1}{(1-\gamma)^{3}\Delta_{\min}^{2}}, \frac{\operatorname{Var}_{(s,\pi^{\star}(s))}[R] + \gamma^{2}\operatorname{Var}_{(s,\pi^{\star}(s))}[V_{\phi}^{\star}]}{\Delta_{\min}^{2}}\right) + \sum_{s,a \neq \pi^{\star}(s)} \frac{\operatorname{Var}[R(s,a)] + \gamma^{2}\operatorname{Var}_{\rho(s,a)}[V_{\phi}^{\star}]}{\Delta_{sa}^{2}} + \frac{S^{2}A}{(1-\gamma)^{2}}\right).$$

2 Drawbacks:

• Solves a convex problem at every step.

• Large burn-in phase:
$$\Omega\left(\frac{S^2A\log(1/\delta)}{(1-\gamma)^2}\right)$$
.

Figure: Asymptotic bound: S=A=2, $\gamma = 0.5$.

Figure: KLB-TS vs. BESPOKE. $S = 5, A = 10, \gamma = 0.7$.

• Most of BESPOKE's sample complexity comes from the burn-in phase $\Omega(\frac{S^2A\log(1/\delta)}{(1-\gamma)^2})$.

Aymen Al Marjani

- Algorithms designed using problem-specific bounds can achieve better sample complexity than minimax ones.
- **②** Contrary to MAB, IT lower bound is hard to solve for MDPs.
- **③** We can derive problem-specific surrogates which :
 - Are explicit, depending on functionals of the MDP.
 - Have a corresponding allocation that is easy to compute.
- Scan be used to devise (Asymptocically) Matching algorithm.
- Sirst step towards understanding problem-specific ε-optimal policy identification.

Merci !
- Agarwal, A., Kakade, S., and Yang, L. F. (2020). Model-based reinforcement learning with a generative model is minimax optimal. volume 125 of *Proceedings of Machine Learning Research*, pages 67–83. PMLR.
- Azar, M. G., Munos, R., and Kappen, H. J. (2013). Minimax pac bounds on the sample complexity of reinforcement learning with a generative model. *Machine learning*, 91(3):325–349.
- Garivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In Feldman, V., Rakhlin, A., and Shamir, O., editors, *29th Annual Conference on Learning Theory*, volume 49 of *Proceedings of Machine Learning Research*, pages 998–1027, Columbia University, New York, New York, USA. PMLR.

- Kearns, M. and Singh, S. (1999). Finite-sample convergence rates for q-learning and indirect algorithms. *Advances in Neural Information Processing*, 11.
- Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. (2018a). Near-optimal time and sample complexities for solving markov decision processes with a generative model. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, *Advances in Neural Information Processing Systems 31*, pages 5186–5196. Curran Associates, Inc.
 - Sidford, A., Wang, M., Wu, X., and Ye, Y. (2018b). Variance reduced value iteration and faster algorithms for solving markov decision processes. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '18, page 770–787, USA. Society for Industrial and Applied Mathematics.

Zanette, A., Kochenderfer, M. J., and Brunskill, E. (2019). Almost horizon-free structure-aware best policy identification with a generative model. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché Buc, F., Fox, E., and Garnett, R., editors, *Advances in Neural Information Processing Systems 32*, pages 5625–5634. Curran Associates, Inc.