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Multiple way to read

Have you
looked at my
reco ¢




Rewards have to be defined

Multi clicks and multi propositions: giving THE best or maximise click rate
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Recommendations are complex tools

Multi propositions
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Position-based model

Other models: Cascading

Model [2]; Dependent Click
Model...

Position-based model [1] : user click is motivated independently by the position and the item

Setting: {L items ; K positions} , at time 1 :

Notation: Kk; view’s probability of position1 € [K] ;
0; click’s probability of the item i € [L].

In other word:

Y, (t)~Ber (k)
X;(t)~Ber(0;)
Zy () ~X; () = Yy (t)

[user consideration of position k]
[user feedback on item i ]

[the observation]

observed

l
:,|> Zy.i(t)~Ber(6; * k) <1:

unknown




From Information Retrieval to Bandits

Aim: give the right list of answers to the right person.
From Information Retrieval (up to ~2010; WWW, WSDM, SIGIR,...) ...

o From collected data
o Find the right model Choice
o Infer the parameters of the model ‘

Algo Env/User

...to Bandits Theory (starting in 2015; ICML, NIPS,... )

L

o Account for the data collection process g

Reward

o0

o Infer parameters AND handle parameters « uncertainty »

.0

D => Exploration/Exploitation dilemma



Main Bandit approaches

Main Articles

Multiple-play bandits in the Position-based model by P. Lagrée, C. Vernade, and O. Cappe, 2016, NeurlPS [3]:
Multiple Play (PBM)
Several approaches: TS, UCB, Pie

Assume k known

Position-based multiple-play bandit problem with unknown position bias by J. Komiyama, J. Honda, and A. Takeda, 2017, NeurlPS [4]:
Multiple Play (PBM)

Permutation exploration / Non convex optimization

Bandit Algorithm for Both Unknown Best Position and Best Item Display on Web Pages by C.-S. Gauthier, R. Gaudel and E. Fromont, 2021, IDA [5]:
Multiple Play (PBM)

No assumption on parameters



Main Bandit approaches

Main Articles

«  ml Open fields:

Linear bandit: contextual

representation for numerous Lack for provable approaches on
products 1 bias by 17Ke PBM with k unknown
Diversity

Lack for PBM

% Ba isplay on Web Pages by C.-S. Gauthier, R. Gaudel and E. Fromont, 2021, IDA [5]:

% No assumption on parameters



Our Contribution

New bandit algorithm, GRAB, learns online a graph of permutations (of recommendations)

. simple to implement and efficient in terms of computation time;

handles the PBM bandit setting without any knowledge on the impact of positions (contrarily to many competitors);

empirically exhibits a regret on par with other theoretically proven algorithms on both artificial and real datasets.

. O(L/A logT) regret upper-bound ( see cumulative regret below )



Unimodality

Unimodality (Definition [6] ) :

Let A be a set of arms and (v,;) ,e4 a set of rewards distribution of respective expectations (ttg)gea - G=(V,E) be a graph with vertices
V = A and edges E. The set of expected rewards (11,) e is unimodal w.r.t G, if and only if :

1) there is a unique best arm, argmax, u, = a*

2) forany a # a*, there exists a path (a® = a, al,..., a"=a*) and, foralli € [n], u,i > pyi-1 and at € N(a'™ 1)
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Unimodality

Unimodality (Definition [6] ) :

Let A be a set of arms and (v,;) ,e4 a set of rewards distribution of respective expectations (ttg)gea - G=(V,E) be a graph with vertices
V = A and edges E. The set of expected rewards (11,) e is unimodal w.r.t G, if and only if :

1) there is a unique best arm, argmax, u, = a*

2) forany a # a*, there exists a path (a® = a, al,..., a"=a*) and, foralli € [n], u,i > pyi-1 and at € N(a'™ 1)

ﬁ\lotes . \

- Unimodal Bandit OSUB [6] can jump from
node to node
- Itsregret R(T) depends on y:= max degree

of the graph. R(T) = O(% logT)

= ’




Unimodality

Unimodality (Definition [6] ) :

Let A be a set of arms and (v,;) ,e4 a set of rewards distribution of respective expectations (ttg)gea - G=(V,E) be a graph with vertices
V = A and edges E. The set of expected rewards (11,) e is unimodal w.r.t G, if and only if :

1) there is a unique best arm, argmax, u, = a*

2) forany a # a*, there exists a path (a® = a, al,..., a"=a*) and, foralli € [n], u,i > pyi-1 and at € N(a'™ 1)

ﬁ\lotes .

Unimodal Ba
node to nod
- ltsregret)

Our nodes are lists of items
=> Find the good structure
to keep unimodality but

reduce the graph’s degree







Unimodal bandit for PBM recommendation : S-GRAB

We explore this graph in order to get the higher L.

The expected reward p increases when you
exchange two items such that the most atfractive
one gets in the most looked position.

We have pU[2413] — U[2143] = (K2 — K3)(04 — 64)

With N(@) = {ao (I, I): I € [L]%1> 1)}

We get R(T) = O(%logT) (same as TopRank [8])



Unimodal bandit for PBM recommendation :GRAB

With the right order on positions, you may limit the
number of transpositions explored.

with N(a, ) = {a o (14, T4, ) k € [K — 1]}

N((2413),(2,1,4,3))



Unimodal bandit for PBM recommendation :GRAB

We get R(T) = O(- logT)

Unimodal




Best regret upper bound

L
GRAB PBM O(Z log(T))
LK?
CombUCB1 [9] PBM 0(=5—log(T))
PBM-PIE [3] PBM with k known 0((L ;K) log(T))
PMED-Hinge [4] PBM withrk; = Kk, = -+ = kg 0(c*(0,k)log(T))
: LK
TopRank [8] PBM with k; = Kk, = -+ = kg O(T log(T))
OSUB [6] Unimodal O(% log(T))

PB-MHB [5] PBM 1)



Experimental Setting

Opponents:

GRAB

S-GRAB
e-Greedy

PMED [4]
PB_MHB [5]
TopRank [8]
KL-CombUCB [9]

Measure:

Cumulative pseudo regret

Data:
purely simulated ( 1,0 set by us )

K,0 inferred Yandex's logs =>
10 selected queries [7] (Pyclic
module)

23




Measure

Cumulative pseudo regret:

T K
Ry =;;E[rk<t>|iz] -

Rt

Want to minimize it

T
t=

k=1

[N

T K
wT — Z Z I OLY
t=1 k=1

24

K
D Elr®liy )]

Cumulative expective regret

A

Random

Bandit

Oracle

—> In loglog scale

v



Best provable algorithm

Environment: 10 -

K,0 inferred from Yandex

0.9 ms per
recommendation

Referee: a

Average on 200 runs of 107 trials with L=10; K=5 E 10° 5

16 ms per
recommendation

(= 20 games on each of the 10 queries selected)

|
Eq-greedy, c=10%
KL-CombUCE
GRAB

5-GRAB ]

=== TopRank
=== PMED
1

:
:
:
5

10" -

PE-MHE, c=10°%, m=1

100 100 10°  10*  10° 10 107

kerations




PB-MHB [5]

THOMPSON SAMPLING

Matching each k; with

Draw thanks to
Metropolis Hasting

0 il Senmte (1 Accept newvolu%wnh proba : @ — Update with
Q/m ial Sample é\ a posterlorl rewards
law
\b\ /Q\ {/ O 0O P(0,x |D,)
? \\ % / [o00o

5/Q 00 [000

. N
Q /%y |60 g S; (t—1 Fi(t-1
Vrew =Voa + Y3 O P(0,k |D;) x ‘ ‘ ‘ ‘ (8;1)° 0D (1 — @5 Fir (=)
€, e~N(0,0) =, =1
1=
™ Prior distribution p(0) Posterior Not usual law (Beta product) =>
distribution P(]y) Not easy to draw from this law




PB-MHB [5]

Based on Thompson sampling.
As rewards come from (1) with a bayesian point of view, we can:
e  Set a uniform prior on @ and K
* Update through a Beta likelihood
* Target the following posterior:
P(6, 1 ID;) o TV TTE 1 (Bke)S11E-D(1 — B¢)Fut-D), (2)
with D;, collected data = list of items and reward at each time from O to t-1,
Sii(t —1) = XEZT (I (s) = DI(r;(s) = 1) = number of time i has been clicked while being displayed in position |;
Fi(t — 1) = XE21 13 (s) = DI(r;(s) = 0) = number of time i has been clicked while being displayed in position |;

*  Matching parameters

27



Our approach: PB-MHB

Split to draw

Split the formula (independence + Gibbs):

P(6;|k,D) = o []i-4 H.S"’l(t_l)(l — 6;x)Futl=D for0;in@ (3)

P(,10,D) = B TIM, )P (1 — 0, Fit®=D, for ke, in k¢ (4]

Draw thanks to Monte Carlo Markov Chain (Metropolis-Hasting with Gaussian random walk kernel
per parameter)

28



Take home

Setting adopted: List recommendation with multiple rewards with full unknown PBM setting
Our approach : Transpose PBM into a unimodal graph

Our (empirical) result: Better regret with less information.

Possible search areas:
* Extend to other behavioural setting

 Contextual Bandits



Questions ?

Camille-Sovanneary GAUTHIER : camille-sovanneary.gauthier@louisvuitton.com

Romaric GAUDEL : romaric.gaudel@ensai.fr
Elisa FROMONT : elisa.fromont@irisa.fr
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